Addendum to the 2017 Annual Groundwater Monitoring Report for the Limited Purpose Landfill at the TransAlta Centralia Mine, near Centralia, Washington

Prepared for

TransAlta Centralia Mining LLC

April 2018

999 W. Riverside Ave Suite 500 Spokane, WA 99201 (509) 747-2000

This addendum has been certified by a Professional Engineer and a Hydrogeologist licensed in the State of Washington and employed by Jacobs, Inc.

Pat Krych, representing:

CH2M HILL Engineers, Inc. 999 W. Riverside Ave, Suite 500 Spokane, Washington 99201 Office Phone: 509-747-2000 Email: Pat.Krych@jacobs.com

Robert Martin, representing:

CH2M HILL Engineers, Inc. 999 W. Riverside Ave, Suite 500 Spokane, Washington 99201 Office Phone: 509-747-2000

Email: Robert.Martin@jacobs.com

Contents

Secti	tion	Page
Acro	onyms and Abbreviations	
1	Introduction	1-:
	1.1 Purpose and Objectives	1-:
2	Retesting Results	2-:
	2.1 Retesting Sampling Event and Results	2-:
	2.2 Summary of Statistically Significant Exceedances	2-2
3	Explanation of Statistically Significant Exceedances	3-:
	3.1 CCR Rule Regulatory Applicability	3-:
	3.2 Alternative Source Demonstration	3-2
	3.3 Summary	3-3
4	References	4-:
Арре	pendixes	
Α	Field Sampling Form	
В	Laboratory Report	
С	TransAlta Centralia Mining, Fourth Quarter 2010 Groundwater Mon 2011 (CH2M 2011b)	itoring Report, February
Table	les	
1	Statistical Method for the CCR Program Limited Purpose Landfill	
2	Monitoring Results and Comparison to Compliance Limits	
3	WAC Program Background Data compared to CCR Program SSIs	

SL0116181521SPK III

Acronyms and Abbreviations

°C degrees Celsius

CCR coal combustion residuals
CFR Code of Federal Regulations
DQR Double Quantification Rule

EPA U.S. Environmental Protection Agency

LPLF Limited Purpose Landfill

mg/L milligram per liter

SSI statistically significant increase

SWFPR sitewide false positive rate

TCM TransAlta Centralia Mine

UPL Upper Prediction Limit

WAC Washington Administrative Code

SL0116181521SPK V

Introduction

This section summarizes this purpose and objectives of this addendum.

1.1 Purpose and Objectives

The purpose of this addendum is to provide supplemental documentation of retesting groundwater quality results which were performed at the Limited Purpose Landfill (LPLF) at the TransAlta Centralia Mine near Centralia, Washington. Retesting was conducted in general accordance with the selected statistical method as documented in the *Coal Combustion Residual Certification of Statistical Method for the Limited Purpose Landfill at the TransAlta Centralia Mining LLC* (CH2M 2017a), and more specifically, as follow-up documentation to supplement the *2017 Annual Groundwater Monitoring Report for the Limited Purpose Landfill at the TransAlta Centralia Mine near Centralia, Washington* (CH2M 2018). This addendum is specifically intended to validate the 2017 statistical evaluation results for detection-phase monitoring, and to provide Professional Engineer (PE) certification that the site remains in the detection phase status as a demonstration of natural variation in groundwater quality in accordance with CFR Part 257.94(e)(2).

SL0116181521SPK 1-1

Retesting Results

This section summarizes the CCR resampling event and groundwater quality results.

2.1 Retesting Sampling Event and Results

The 2017 annual report (CH2M 2018) identified and reported the following four cases which exceeded their respective background limits from the October 5, 2017 sampling event:

- Boron in LPLF-2R
- Calcium in LPLF-2R
- pH in LPLF-2R
- Total dissolved solids (TDS) in LPLF-2R

As noted in the annual report (CH2M 2018), retesting was needed for these cases and was completed on February 28, 2018 to determine if these are valid statistically-significant exceedances (SSIs), or if they were found to be 'false-positives'. Appendix A is a copy of the field sampling form, and Appendix B is a copy of the laboratory analytical data package for the retesting event. Data validation of the retesting results was completed on April 16, 2018 and confirmed that the retesting results satisfied the respective data quality objectives and met the quality control metrics.

Table 1 summarizes the statistical methods for all the wells and constituents as established from the *Coal Combustion Residual Statistical Method Certification for the Limited Purpose Landfill at the Centralia Mine near Centralia, Washington* (CH2M 2017a). As shown on this table (and as explained in the annual report), several of the constituents exhibited changing conditions (trends) during background period, and as such, the trends are accounted for in calculating background limits. For LPLF-2R, boron, calcium, and TDS background limits are calculated values which are dependent on time of sampling, whereas pH background limits are fixed.

Table 2 presents the background limits and results from the October 5, 2017 sampling event, which summarizes that the 4 cases listed above required retesting to determine if they were valid SSIs. Table 2 also shows the retesting results from the February 28, 2018 event, which confirms that pH is within the background limit, however, boron, calcium, and TDS for LPLF-2R exceed the limit and in accordance with the selected statistical method on retesting are considered to be confirmed SSIs.

2.2 Summary of Statistically Significant Exceedances

The 2017 annual report identified four constituents in LPLF-2 where the October 5, 2017 values exceeded the background limits. Retesting was completed on February 28, 2018 and the results were validated on April 16, 2018. The retesting results confirmed that pH was within the background limit, however, boron, calcium, and TDS at LPLF-2R (shown in Table 2) are confirmed SSIs. In response to these SSIs, the owner (that is, TransAlta) is providing PE certification of an alternative source demonstration in Section 3 of this addendum as an option under CFR Part 257.94(e)(2) in lieu of shifting into Assessment Monitoring.

SL0116181521SPK 2-1

Explanation of Statistically Significant Exceedances

This section presents an alternative source demonstration in response to confirmed SSIs in accordance with 40 CFR Part 257.94(e)(2).

3.1 CCR Rule Regulatory Applicability

In accordance with 40 CFR Part 257.94(e)(2), the site owner has the option to demonstrate that a source other than the regulated unit (i.e., ash waste in the LPLF) caused the SSI exceeding background levels before automatically shifting into the assessment phase requirements. The CCR regulations cite examples of alternative sources causing SSIs such as error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality.

The CCR regulations require alternative source demonstrations to be certified by a PE and completed within 90 days following determination of a valid SSI. The retesting results were validated on April 16, 2018, which is interpreted as the start of the 90-day period to complete the alternative source demonstration (or the need to shift into assessment monitoring if a successful demonstration is not made, etc.). Assuming April 16, 2018 as the effective start date for alternative source demonstration, a successful demonstration must be posted to the publicly available website no later than July 14, 2018.

3.2 Alternative Source Demonstration

This section presents the technical basis and supporting documentation to support that natural variation in groundwater quality at the LPLF site is the reason for the SSIs observed for several of the constituents at LPLF-2R.

Site History

The hydrogeological setting of the LPLF is unique in that present day subsurface conditions were constructed such that surface overburden soils (mine spoils) were excavated during active mining operations in 2006 to expose coal seams within the relatively fine-grained Skookumchuck formation. As part of reclamation efforts following coal mining activities, the mine spoils were backfilled into a pit that forms the current footprint of the LPLF. Recharge via precipitation created a zone of saturation within the mine spoils immediately overlying the fine-grained Skookumchuck formation, which is the target groundwater monitoring zone as described in the *Coal Combustion Residual Groundwater Monitoring System Certification for the Limited Purpose Landfill at the Centralia Mine Site near Centralia, Washington* (CH2M 2017b). The mine spoils are generally characterized as light tan to brown silty loam to silty clay with sand lenses; the underlying Skookumchuck is characterized as a sequence of siltstones, claystones, coal seams, and occasional carbonaceous shales. The stratigraphic sequence beneath the center of the LPLF consists of approximately 80 feet of mine spoils, underlain by relatively thick sequence of Skookumchuck, estimated at over 500 feet thick in the area.

The mine spoils were generated by removal of coal seam interburdens, and placed back into the mined pit. The interburden was comprised of silt and claystones with stringers of sub-economical coal stringers. The backfill placement resulted in a highly heterogeneous spoil of pulverized silt and claystone as discrete and localized coal and pyritic debris mixed laterally and vertically. These gravel to cobble sized materials can be acid forming, and generate localized suppressed pH in the otherwise alkaline silt

SL0116181521SPK 3-1

and clay spoils, and secondary mobilization of calcium, sulfate, and other constituents increasing TDS in groundwater.

The presence of acid forming materials in the spoils can result in elevated TDS and associated dissolved constituents in groundwater with localized increases closer to the material. As groundwater fluctuates, this can either submerge previously unsaturated material, or expose saturated material to aerobic conditions in the unsaturated zone. The vertical heterogeneity of these materials results in groundwater conditions that can be highly variable for constituents susceptible to mobilization under suppressed pH conditions within localized areas, within a specific monitoring location.

Prior to the CCR regulations which were enacted in April 2015, TCM characterized the hydrogeological conditions for the LPLF as documented in Section 2 of *TransAlta Centralia Mining LLC*, *Limited Purpose Landfill Solid Waste Permit Application*, dated October 2008 (CH2M, 2008). To satisfy Chapter 173-350-500, *Limited Purpose Landfill*, WAC regulations, TCM initiated background monitoring prior to waste placement from 2007 to present, as described in the Ecology-approved *Groundwater Monitoring Plan for TransAlta Centralia Mining LLC Limited Purpose Landfill*, *Amendment 1*, *July 2011* (CH2M, 2011a) as approved by the Washington State Department of Ecology (Ecology) and the (LCEHD). Since 2010, TCM has prepared quarterly and annual groundwater monitoring reports and submitted these to Ecology in accordance with Chapter 173-350[5] *Groundwater Monitoring – Data Analysis*, *Notification*, *and Reporting*. To date, the WAC program remains under detection-phase monitoring status. The existing WAC data collected from 2007 to 2009 pre-date waste placement into the LPLF, and are used to document the heterogenous nature of background conditions, and are presented in the following section as part of the alternative source demonstration for the CCR program.

Background Monitoring Results

Appendix C is a copy of the *TransAlta Centralia Mining Fourth Quarter 2010 Groundwater Monitoring Report* (CH2M 2011b). This report includes descriptive statistics (via Appendix B of this report) collected during the period from 2007 to 2009, which represents site conditions of the mine spoils prior to when wastes were placed into the LPLF, effectively considered as background conditions.

Table 3 summarizes the background data obtained from 2007 to 2009 via WAC program for boron, calcium, and TDS, which are the 3 constituents which are considered SSIs under the CCR program as described in Section 2. The highlighted values (and also shown in bold font) illustrate WAC data for LPLF background data which are higher mean concentrations for boron, calcium and TDS in comparison to the CCR program values at LPLF-2R which were considered SSIs. The WAC background data demonstrate (1) substantial spatial variability and heterogeneity in these constituents of interest, and (2) that the CCR values which were identified as SSIs are actually within the demonstrated range of natural variation in groundwater quality during WAC background period.

In response to the onset of CCR Rule in April of 2015, the site owner (that is, TransAlta [TCM]) installed monitoring wells, initiated the detection monitoring program and completed the required eight background monitoring events to establish background conditions and to select an appropriate statistical method by the October 17, 2017 deadline. The duration of when the CCR Rule was effective to when initial reporting of detection monitoring results constrains the background monitoring period to approximately one full hydrological season. Although the (minimum) number of background monitoring events were satisfied per CCR Rule, it is inferred that the background monitoring period (i.e., limited to about 1 year) may not have captured the actual natural variation which might be expected to occur in a natural groundwater environment, which can vary due to changes in annual precipitation (recharge) and related geochemical changes associated with residence time within the aquifer materials. Background monitoring events conducted over several years or multiple hydrological cycles would more appropriately characterize the natural variability in groundwater, and yield more data to strengthen statistical power of detection monitoring analyses. Given these considerations, it is believed that the

3-2 SL0116181521SPK

background limits for the CCR program have not fully captured the natural variation in groundwater quality at the LPLF site, and future such alternative source demonstrations may be expected.

As noted in the statistical method certification (CH2M 2017a) and in accordance with Unified Guidance (EPA 2009), due to the complex behavior of groundwater and the need for sufficiently large sample sizes, it is recommended to update background conditions following four to eight sampling events. Using this principle with semi-annual sampling as prescribed under the CCR program, the background values should be reviewed and updated using statistical analysis every 2 to 4 years assuming no confirmed statistically significant increase is identified. In addition, if hydrogeologic conditions change, then background should be updated to match the latest conditions.

3.3 Summary

Key findings developed and/or confirmed from the annual groundwater report and as provided in this addendum are summarized as follows:

- Implementation of CCR Detection Monitoring Program. TCM initiated the CCR requirements starting in summer of 2016 with the focused field investigation and well installation effort to augment the existing well network; functional details of the sampling plan were documented in the CCR SAP (CH2M, 2016b). Certification documents for the groundwater monitoring system design and the selection of statistical method were posted to the public website before the October 17, 2017, deadline.
- Background and Detection-phase Compliance Monitoring Events. The eight background monitoring
 events were completed from November 14, 2016, through June 28, 2017; the initial detection-phase
 compliance event was completed on October 5, 2017.
- Detection Monitoring Results/Statistical Evaluation/2017 Annual Report. The initial 2017 annual report was completed by the January 31, 2018 deadline, and posted to the publicly available website. The 2017 annual report confirmed the October 5, 2017 compliance values were less than or within the background compliance limits, except for four cases which exceeded background compliance limits and required retesting. Retesting was completed on February 28, 2018 for boron, calcium, pH and TDS in well LPLF-2R.
- Retesting/Addendum to the 2017 Annual Report (as presented herein). Analysis of retesting results
 confirms that pH was within the background limit, however, boron, calcium, and TDS were identified
 as SSIs based on the CCR statistical method. Based on the results and analysis in this addendum,
 however, these SSIs were explained or qualified as unrelated to the LPLF waste materials, and due
 to natural variation in groundwater quality.
- Status of CCR Monitoring Program. This addendum has been certified by a PE in accordance with the alternative source demonstration per 40 CFR Part 257.94(e)(2) to document that the 2017 SSIs for boron, calcium, and TDS at LPLF-2R are due to natural variation in groundwater quality, and are not caused by potential influence from the LPLF. The LPLF remains under the detection-phase monitoring status per 40 CFR 257.94, Detection Monitoring Program.

SL0116181521SPK 3-3

References

CH2M HILL Engineers, Inc. (CH2M). 2008. TransAlta Centralia Mining LLC, Limited Purpose Landfill Solid Waste Permit Application, dated October 2008.

CH2M HILL Engineers, Inc. (CH2M). 2011a. *Groundwater Monitoring Plan for TransAlta Centralia Mining LLC Limited Purpose Landfill, Amendment 1, July 2011*.

CH2M HILL Engineers, Inc. (CH2M). 2011b. *TransAlta Centralia Mining Fourth Quarter 2010 Groundwater Monitoring Report.*

CH2M HILL Engineers, Inc. (CH2M). 2017a. Coal Combustion Residual Statistical Method Certification for the Limited Purpose Landfill at the Centralia Mine near Centralia, Washington.

CH2M HILL Engineers, Inc. (CH2M). 2017b. Coal Combustion Residual Groundwater Monitoring System Certification for the Limited Purpose Landfill at the Centralia Mine Site near Centralia, Washington.

CH2M HILL Engineers, Inc. (CH2M). 2018. 2017 Annual Groundwater Monitoring Report for the Limited Purpose Landfill at the TransAlta Centralia Mine near Centralia, Washington.

U.S. Environmental Protection Agency (EPA). 2009. *Unified Guidance: Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities.*

U.S. Environmental Protection Agency (EPA). 2015. Federal Register, 40 CFR § 257 and 261, Hazardous and Solid Waste Management System, Disposal of Coal Combustion Residuals from Electric Utilities, Final Rule, Vol. 80 No. 74, dated Friday, April 17, 2015.

Washington Administrative Code (WAC). Chapter 173-350, Solid Waste Handling Standards.

SL0116181521SPK 4-1

Tables

Table 1. Statistical Method for TransAlta Limited Purpose Landfill

Addendum to the 2017 Annual Groundwater Monitoring Report – Limited Purpose Landfill at the TransAlta Centralia Mine

Well	Constituents	Units	Method	Trending Calculated UTL (if needed) = { Intercept + [Slope* Time(days)] + Residual }			s)] + Residual }	K-Value	Lower Compliance Levels	Upper Compliance Levels
		55		Trend Removal	Intercept	Slope	Residual		LPL	UPL
LPLF-2R	Boron	mg/L	Parametric UPL	Yes	0.3617368	-0.0001758	0.0181	2.4		Calculated
LPLF-2R	Calcium	mg/L	Parametric UPL	Yes	495.1875	-0.2273	36.37	2.4		Calculated
LPLF-2R	Chloride	mg/L	Parametric UPL	No				2.4		9.77
LPLF-2R	Fluoride	mg/L	DQR	No						DQR
LPLF-2R	рН	pH units	Parametric UPL	No				2.79	6.08	6.86
LPLF-2R	Sulfate	mg/L	Parametric UPL	No				2.4		2010
LPLF-2R	TDS	mg/L	Non-Parametric UPL	Yes	3718.1393	-0.9717	474.89	2.4		Calculated
LPLF-7R	Boron	mg/L	Parametric UPL	No				2.4		0.427
LPLF-7R	Calcium	mg/L	Parametric UPL	No				2.4		223
LPLF-7R	Chloride	mg/L	Parametric UPL	Yes	6.58201	-0.02855	7.44	2.4		Calculated
LPLF-7R	Fluoride	mg/L	DQR	No						DQR
LPLF-7R	рН	pH units	Parametric UPL	No				2.79	6.06	6.98
LPLF-7R	Sulfate	mg/L	Parametric UPL	Yes	718	3.197	170.01	2.4		167
LPLF-7R	TDS	mg/L	Parametric UPL	Yes	1560	4.448	278.43	2.4		253
LPLF-8	Boron	mg/L	Parametric UPL	No				2.4		0.988
LPLF-8	Calcium	mg/L	Parametric UPL	Yes	363.94062	0.07846	33.96	2.4		Calculated
LPLF-8	Chloride	mg/L	Parametric UPL	No				2.4		7.39
LPLF-8	Fluoride	mg/L	DQR	No						DQR
LPLF-8	рН	pH units	Parametric UPL	No				2.79	5.61	6.36
LPLF-8	Sulfate	mg/L	Parametric UPL	Yes	1989.33	2.482	123.75	2.4		Calculated
LPLF-8	TDS	mg/L	Parametric UPL	Yes	3180.934	3.161	307.97	2.4		Calculated

Notes:

DQR = Double Quantification Rule (a SSI is identified from any future detection above previous non-detected values, etc)

UPL = Upper Prediction Limit

LPL = Lower Prediction Limit

Detrending time variable assumes the period (in days) from when initial background event was obtained (November 14, 2016) to when the compliance event in question was collected.

Table 2. Detection Monitoring Results and Retesting

Addendum to the 2017 Annual Groundwater Monitoring Report - Limited Purpose Landfill at the TransAlta Centralia Mine

Well Constituen		Units	Lower Compliance Limit	Upper Compliance Limit	Initial Detection Monitoring Result	Lower Compliance Limit	Upper Compliance Limit	Retest Monitoring Result	Confirmed SSI (Yes/No)
			October 5, 2017	October 5, 2017	October 5, 2017	February 28, 2018	February 28, 2018	February 28, 2018	
LPLF-2R	Boron	mg/L		0.323	0.363		0.030	0.363*	Yes
LPLF-2R	Calcium	mg/L		458	546		424	471*	Yes
LPLF-2R	Chloride	mg/L		9.77	8.03(J)				No
LPLF-2R	Fluoride	mg/L		DQR	<1 (ND)				No
LPLF-2R	рН	pH units	6.08	6.86	6.97(J)	6.08	6.86	6.54	No
LPLF-2R	Sulfate	mg/L		2,010	1,910				No
LPLF-2R	TDS	mg/L		3,440	3,650		3,300	3,440*	Yes
LPLF-7R	Boron	mg/L		0.427	0.377				No
LPLF-7R	Calcium	mg/L		223	210				No
LPLF-7R	Chloride	mg/L		7.44	6.29				No
LPLF-7R	Fluoride	mg/L		DQR	<1 (ND)				No
LPLF-7R	рН	pH units	6.06	6.98	6.78(J)	6.06			No
LPLF-7R	Sulfate	mg/L		1,930	1,220				No
LPLF-7R	TDS	mg/L		3,280	2,350				No
LPLF-8	Boron	mg/L		0.988	0.968				No
LPLF-8	Calcium	mg/L		423	411				No
LPLF-8	Chloride	mg/L		7.39	5.79				No
LPLF-8	Fluoride	mg/L		DQR	<1 (ND)				No
LPLF-8	рН	pH units	5.61	6.36	6.09(J)	5.61			No
LPLF-8	Sulfate	mg/L		2,920	2,410				No
LPLF-8	TDS	mg/L		4,280	3,740				No

Notes:

DQR = Double Quantification Rule as described in *Annual Report* (CH2M 2018).

Lower Compliance Limit = Lower Prediction Limit

Upper Compliance Limit = Upper Prediction Limit

SSI = statistically-significant exceedance

Bold-font indicate apparent SSI where 10/5/2017 results exceeded limit; retesting performed to confirm if these cases are confirmed exceedances (SSIs).

Bolt-font with '*' indicate confirmed statistically-significant exceedances (SSIs).

Table 3. WAC Program Background Data compared to CCR Program SSIs

Addendum to the 2017 Annual Groundwater Monitoring Report - Limited Purpose Landfill at the TransAlta Centralia Mine

	CCR Program - 2017 SSIs LPLF-2 Exceedance Retest						
Constituent Name	Well	N	Mean	Min	Max	% Non-Detects	Result
Calcium (mg/L)	LPLF1 (bg)	15	363.3	79	444	0	Result
Calcium (mg/L)	LPLF2	36	241.6	180	345	0	
Calcium (mg/L)	LPLF3	36	49.19	39	67	0	
Calcium (mg/L)	LPLF4	36	16.83	12	22	0	
Calcium (mg/L)	LPLF5 (bg)	15	426.2	126	865	0	471 mgl/L
Calcium (mg/L)	LPLF8	25	492.1	419	573	0	
Calcium (mg/L)	UnderDrain	12	518.7	456	585	0	
Calcium (mg/L)	Leachate	5	324.8	291	379	0	
Dis. Boron (mg/L)	LPLF1 (bg)	15	0.8199	0.665	0.982	0	
Dis. Boron (mg/L)	LPLF2	36	0.1709	0.134	0.281	0	
Dis. Boron (mg/L)	LPLF3	36	0.2733	0.151	0.87	0	
Dis. Boron (mg/L)	LPLF4	36	0.233	0.05	0.333	0	
Dis. Boron (mg/L)	LPLF5 (bg)	15	0.2021	0.153	0.307	0	0.363 mg/L
Dis. Boron (mg/L)	LPLF8	25	0.7169	0.448	1.12	0	
Dis. Boron (mg/L)	UnderDrain	12	0.7832	0.1	1.04	0	
Dis. Boron (mg/L)	Leachate	5	2.512	2.03	3.23	0	
TDS (mg/L)	LPLF1 (bg)	15	4207	1400	5000	0	
TDS (mg/L)	LPLF2	36	1280	970	1900	0	
TDS (mg/L)	LPLF3	36	866.4	710	1100	0	
TDS (mg/L)	LPLF4	36	312.5	230	450	0	2.440 /1
TDS (mg/L)	LPLF5 (bg)	15	2313	830	4000	0	3,440 mg/L
TDS (mg/L)	LPLF8	25	4308	3100	6400	0	
TDS (mg/L)	UnderDrain	12	3400	2900	3700	0	
TDS (mg/L)	Leachate	5	2940	2400	3300	0	

Notes

Refer to maps in Appendix C for the WAC well locations; LPLF-1 and LPLF-5 are upgradient of LPLF.

WAC data shown in bold-font and highlighted demonstrate background concentrations which exceed the retest results for LPLF-2.

Appendix A Field Sampling Form

Groundwater Purging and Sampling Form

SITE:	E: LPLF Project Number: CCR						Well ID:	LPLF 2R	
Field Team:	B	in C	Denten						2-28-18
Weather/Te	mp:	Zan 4	(000				Arrival Time to Well: 10:55		
Purge Metho	od: 🗆 Blad	der 🖂	Peristaltic				Initial DT	W (ft btc):	(3,01)
Pump Settin	95: 200	mlmin		Notes:					As.
				Field	d Parameters		- AVIII		
Time ¹	DTW ²	Purge Vol. (ml)	рН	Sp. Cond. (uS/cm)	(mg/L)	(°C)	(mV)	(NTU)	Note color, odor, etc.
5	Begin Pumpin	g							
10	(3.04)	2000	5.95	2160	4.04	8.89		2.1	
15	(3.11)	3000	5.97	2166	3.53	9.79		2.0	
20	(3.13)	4000	600	2152	2.96	9.60		1.7	
Stabilization Criteria ³			± 0.1 units	± 3%	± 0.3 mg/L		± 10 mV	± 10%4	•
3 Stabilization achi	meters in consistent eved after 3 success	sive readings for Lo	w-Flow method; min	nimum parameter s				w-Flow method	
For turbidity read Sample ID:			ourge rate is 0.1 - 0. - CCR - L					Sampla Timo:	11:15
	Appendix III (47 185.1	1.00			sample Time.	11.10
Allalysis.	Appendix IV		adium 226, and		and 103)				
QC SAMPLE	: □ Fie	eld Duplicate	K MS/N	MSD 🗆	EQ Rinsate B	lank	TOTAL P	URGED (ml):	4000
QC Sample I	D:		-				QC	Sample Time:	
Comments:									

ADDRESS 1317 South 13th Ave., Kelso, WA 98626 PHONE 1 360 577 7222 FAX 1 360 636 1068

Work Order No.: 80819

Chain of Custody

Part of the ALS Group A Campbell Brothers Limited Company Bill Scheer Project Manager: Bill to: Bill Scheer TransAlta Centralia Mining Company Client Name: TransAlta Centralia Mining Company: 913 Big Hanaford Road Address: 913 Big Hanaford Road Address: City, State ZIP: Centralia, WA 98531 City, State ZIP: Centralia, WA 98531 bill scheer@transalta.com Email: bill scheer@transalta.com Phone: 360-330-2332 Email: po# **REQUESTED ANALYSIS** TAT Project Name: LPLF CCR Project Number: Routine 21day 4700075456 Line90 P.O. Number: Same Day 100% Sampler's Name: Bill Scheer Next Day *** SAMPLE RECEIPT 3 Day 5 Day Temperature (°C): Temp Blank Present 50% Wet Ice / Blue Ice Received Intact: Yes No N/A Surcharges. Yes No N/A Total Containers: Cooler Custody Seals: Please call for of Containers 904.0 / Radium 228 SM 4500·H + B / pH No N/A Sample Custody Seals: Yes availability 903.0 Radium 226 9056A / Chloride 6020A / Metals T 6010C / Metals T SM 2540 C / TDS Due Date: 9056A / SO4 7470A / Hg 9056A / F Date Time Sample Identification Lab ID Matrix Sampled Sampled No. Comments GW 2 X X X X 022818-CCR-LPLF2R 02/28/2018 11:15 MS/MSD Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Se, Si, Sn, Sr, Tl, V, Zn, Zr Additional Methods Available Dissolved **Upon Request** Total Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Se, Si, Sn, Sr, Tl, V, Zn, Zr RELINQUISHED BY RECEIVED BY Print Name Date/Time Print Name Signature Date/Time Signature William Scheer 02/28/2018 2-28-18 1545 ANIDZ

Appendix B Laboratory Report

March 12, 2018

ALS Environmental
ALS Group USA, Corp
1317 South 13th Avenue
Kelso, WA 98626

T:+1 360 577 7222

F:+1 360 636 1068 www.alsglobal.com

Analytical Report for Service Request No: K1801892

Dennis Morr Transalta Centralia Mining, LLC 913 Big Hanaford Rd Centralia, WA 98531

RE: LPLF CCR

Dear Dennis,

Enclosed are the results of the sample(s) submitted to our laboratory February 28, 2018 For your reference, these analyses have been assigned our service request number **K1801892**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3356. You may also contact me via email at Kurt.Clarkson@alsqlobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Kurt Clarkson

Sr. Project Manager

ALS Environmental ALS Group USA, Corp 1317 South 13th Avenue Kelso, WA 98626

T: +1 360 577 7222 F: +1 360 636 1068 www.alsglobal.com

Table of Contents

Acronyms
Qualifiers
State Certifications, Accreditations, And Licenses
Chain of Custody
General Chemistry
Metals

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LOD Limit of Detection
LOQ Limit of Quantitation

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a substance

allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater than or

equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEH	http://dec.alaska.gov/eh/lab/cs/csapproval.htm	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L16-58-R4
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	http://health.hawaii.gov/	-
ISO 17025	http://www.pjlabs.com/	L16-57
Louisiana DEQ	http://www.deq.louisiana.gov/page/la-lab-accreditation	03016
Maine DHS	http://www.maine.gov/dhhs/	WA01276
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/enforcement/oqa.html	WA005
New York - DOH	https://www.wadsworth.org/regulatory/elap	12060
	https://deq.nc.gov/about/divisions/water-resources/water-resources-data/water-sciences-home-page/laboratory-certification-branch/non-field-lab-	
North Carolina DEQ	certification	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaboratoryAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/EnvironmentalLabCertification/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wyoming (EPA Region 8)	https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water-	-
Kelso Laboratory Website	www.alsglobal.com	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Chain of Custody

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

ADDRESS 1317 South 13th Ave., Kelso, WA 98626 PHONE 1 360 577 7222 FAX 1 360 636 1068

Work Order No.: 80819

Chain of Custody

(ALS) Part of t	he ALS Grou	ıp A Campbe	II Brothers Li	mited Con	npany	,																	
Project Manager: Bill Sch	eer										Bill	to:			Bill	Schee	r						
Client Name: TransA	lta Centralia	a Mining Com	pany							7	Co	mpar	ıy:		TransAlta Centralia Mining								
Address: 913 Big	Hanaford I	Road]	Ad	dres	:		913	Big H	anafo	rd Ro	ad				
City, State ZIP: Central	ia, WA 985	31]	Cit	y, Sta	ite Z	IP:	Cer	ntralia,	WA 9	8531					
Email: bill sch	eer@transa	alta.com		Phone:	360)-33(0-23	32			Em	ail:			bill	schee	@tran	salta.	com		po#	_	
Project Name: LPLF C	CR				1000			Val.			<u>Nava</u>	RE	QUE	STE	D A	IALYS	IS			(MANY		divide)	TAT
Project Number:					10,000	N NOW																T	Routine 21day
P.O. Number: 47000	75456 Line	90											[Į.					1			Same Day 100%
Sampler's Name: Bill Sch	eer							1					Ì										Next Day ***
	SAMPLE R	ECEIPT																					3 Day
Temperature ('C):		Temp Bla	nk Present																				5 Day 50%
Received Intact:	Yes	No N/A	Wet Ice /	Blue Ice										İ									Surcharges.
Cooler Custody Seals:	Yes	No N/A	Total Con	tainers:	1			\		1	1		1					1	1 1			Ì	Please call for
Sample Custody Seals:	Yes	No N/A			ers		표	228			ت ا			_	_	ا يو ا	İ						availability
					ai.		8/	E	P		ž.			SE	SE	n 226						i	Due Date:
Sample Identification	Matrix	Date Sampled	Time Sampled	Lab ID	No. of Containers		SM 4500-H+	904.0 / Radium	SM 2540 C / TDS	7470A / Hg	9056A / Chloride	9056A / F	9056A / SO4	6010C / Metals	6020A / Metals	903.0 Radium							Comments
022818-CCR-LPLF2R	GW	02/28/2018	11:15		2		X		X		Ť		X	X			_	1		\neg		†	MS/MSD
										†							\neg	1				T	
					†						İ		 				_			一		+	
				1					1	 	1			 			_	1		\dashv		 	
					 						 	 		 			_	 	-	\dashv		+	· · · · · · · · · · · · · · · · · · ·
				-	 					-			 					-		\dashv		+	
				1					 	 								 		\dashv		 	
				-	 		_			 	-	╁		 				ļ	-	-+		+	
	_			-	 			······	├─	 							_	 		\dashv		 	
	_			 	 								ļ	 -			┪	-		-+		-	
				-						<u> </u>	├—								-	-+	-	 	
Dissolved		<u>l </u>	- Po Co Cd				<u>_</u>	l		L	L	D Db	C 1-			C TI		7		_	<u> </u>		
Total								_													Agaitic		Methods Available on Request
TOTAL		Ig, Al, As, B, B		, Co, Cr,	Cu, r	e, ĸ,	LI, IVI	g, wii	n, ivic), Na	, #NI,	P, PD	, SD,	se, s	ı, ən,	эг, н,			ED B	V		Opt	n request
	N.									distribition Analysis	MANANA Manada					andenigali Shasharin	T C	JEIV		3 43 44 4			
Print Name			gnature		Date/Time Print Name Signature)		Date/Time														
William Scheer				7	02/2	28/2	2018				140	102	Au	Mr.	<i></i>					mmerif	Salara Sa	_	2-28-18 1545
		<i>V</i>																مثند	V				
***************************************			***************************************	**************************************							····												***************************************

PC KC

Cooler Receipt and Preservation Form

				Cooler r	ceceip	LAHU	r i ese	ivau	OH LOLM				
Client	TRANS						Şer	vice F	Request <i>K18_</i>	0187	Z		
Received:	2-28-1	8 (Opened:	2-28-	18	By:	By)	Unloaded:	2-2	8-18 By:_	SSA	
<u>-</u>								n.	<u> </u>	6.	500000		
•	s were recei		USPS	Fed Ex	UPS		DHL	PD		Hand	Delivered	A7.4	
•	s were recei		,	ooler)	Box	En	velope		Other		Tap Fan	NA	
	ustody seals			NA (Y					nany and wher			<i>77</i>	 N1
If prese	ent, were cus	stody seals	intact?	<u> </u>) N		- 	·	t, were they sig				N
Raw Cooler Temp	Corrected. Copier Temp	Raw Temp Blank	Corrected Temp Blank	Corr. Factor		nometer ID	C	ooler/C	OC ID NA]	racking Numbe	r (N/	Filec
10.0	5.9	33	32	-0.1	39	Ŝl							
•							<u> </u>						
			 	· 	 								
}		· 			<u> </u>		-						-
4 n ''			0	P. LLI : T					Des Las Ci				
	ng material;	•		Bubble W	_		is w	et ice	Dry Ice Si	leeves	***	<u>(1)</u>	
	custody pap		•		,						NA Total	\sim	N
6. Were	samples rec	~	ood conditio pplicable, ti	•			*	licate i Froze i	in the table bel n		NA Thawed	(\mathcal{A})	N
7. Were	all sample la		•	•			u.	r rozei	u Faruany	inawea	nawea N	(v)	N
	•	•	•	•		,	e maio	or disco	repancies in the	e table on		\sim	N
	appropriate	=	_		•		,		•		N.	\sim	N
									pH? <i>Indicate</i>	in the tab			N
	e VOA vials		·		•			•	.		N	-	N
	s C12/Res no					.,						A Y	N
			,									2	_]
	Sample ID	on Bottle			Sampl	e ID on	coc				Identified by:		
				<u> </u>	·	<u></u>							·i
			·										
L													
			Bot	tle Count	Out of	Head.	1			Volume	Reagent Lot		
	Sample			ttle Type		space	Broke	рΉ	Reagent	added	Number	Initials	Time
0228	18 -CCR-	ULFZR	3 2	250.4L				×	4203	O.Sal	RE1-46-11	151	16th
					ļ					 -			
													
\					 								
					 	 		<u> </u>					
					1	<u> </u>	L	<u> </u>	<u> </u>			1	
Notes,	Discrepan	cies, & R	esolutions.	100 Cat 1000	ACCORD NOTICE AND		- 600						
	-				n band in the	en se	Watther.		in a superior				
													
7/2	5/16				h dii).	Pag	e of	•

General Chemistry

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Analytical Report

Client: Transalta Centralia Mining, LLC

Service Request: K1801892 **Date Collected:** 02/28/18 **Project:** LPLF CCR **Sample Matrix:** Water **Date Received:** 02/28/18

Analysis Method: 9056A Units: mg/L **Prep Method:** None Basis: NA

Sulfate

Sample Name	Lab Code	Result	MRL	Dil.	Date Analyzed	Q
022818-CCR-LPLF2R	K1801892-001	1910	20	200	03/07/18 14:30	
Method Blank	K1801892-MB1	ND U	0.10	1	03/07/18 10:14	

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Transalta Centralia Mining, LLC Service Request: K1801892

Project LPLF CCR **Date Collected:** 02/28/18 **Date Received:** 02/28/18

Sample Matrix: Water

Date Analyzed: 03/07/18

Replicate Sample Summary General Chemistry Parameters

1910

Sample Name: 022818-CCR-LPLF2R

Sulfate

Units: mg/L

Lab Code: K1801892-001 Basis: NA

RPD

Duplicate Sample

K1801892-

Analysis

9056A

MRL

20

Analyte Name Method Sample Result

001DUP

Result 1850

Average

1880

RPD Limit 20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 3/9/2018 4:13:40 PM Superset Reference:18-0000456552 rev 00

QA/QC Report

Client: Transalta Centralia Mining, LLC

Project: LPLF CCR

Sample Matrix: Water **Service Request:**

K1801892

Date Collected:

02/28/18

Date Received:

02/28/18

Date Analyzed: Date Extracted:

Units:

Basis:

03/7/18 NA

mg/L

NA

Duplicate Matrix Spike Summary

Sulfate

Sample Name: Lab Code:

022818-CCR-LPLF2R

K1801892-001

Analysis Method:

9056A

Prep Method: None

Matrix Spike

Duplicate Matrix Spike

K1801892-001MS K1801892-001DMS

	Sample		Spike			Spike		% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Sulfate	1910	2660	800	94	2720	800	101	90-110	2	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 3/9/2018 4:13:40 PM Superset Reference: 18-0000456552 rev 00

QA/QC Report

Transalta Centralia Mining, LLC **Client:**

Service Request: Date Analyzed:

K1801892

Sample Matrix:

Project:

LPLF CCR Water

Date Extracted:

03/07/18 NA

Lab Control Sample Summary

Sulfate

Analysis Method: 9056A **Prep Method:**

None

mg/L

Units: Basis:

NA

Analysis Lot:

582843

			Spike		% Rec
Sample Name	Lab Code	Result	Amount	% Rec	Limits
Lab Control Sample	K1801892-LCS	5.28	5.00	106	90-110

Analytical Report

Client: Transalta Centralia Mining, LLC

Service Request: K1801892 **Date Collected:** 02/28/18 **Project:** LPLF CCR **Sample Matrix:** Water **Date Received:** 02/28/18

Analysis Method: SM 2540 C

Prep Method: None

Solids, Total Dissolved

Sample Name	Lab Code	Result	MRL	Dil.	Date Analyzed	Q
022818-CCR-LPLF2R	K1801892-001	3440	5.0	1	03/01/18 13:32	
Method Blank	K1801892-MB1	5.0	5.0	1	03/01/18 13:32	
Method Blank	K1801892-MB2	ND U	5.0	1	03/01/18 13:32	

Units: mg/L

Basis: NA

QA/QC Report

Client: Transalta Centralia Mining, LLC

Project LPLF CCR
Sample Matrix: Water

Date Collected:02/28/18 **Date Received:**02/28/18

Service Request:K1801892

Analysis Method:

Prep Method:

SM 2540 C None Units:mg/L Basis:NA

Replicate Sample Summary Solids, Total Dissolved

			Sample	Duplicate			RPD	Date
Sample Name:	Lab Code:	MRL	Result	Result	Average	RPD	Limit	Analyzed
022818-CCR-LPLF2R	K1801892-001DUP	5.0	3440	3420	3430	<1	10	03/01/18

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 3/9/2018 4:13:57 PM Superset Reference:18-0000456552 rev 00

QA/QC Report

Client: Transalta Centralia Mining, LLC

Project: LPLF CCR **Service Request: Date Analyzed:**

K1801892

Sample Matrix: Water

Date Extracted:

03/01/18 NA

Lab Control Sample Summary

Solids, Total Dissolved

Analysis Method: SM 2540 C **Units:**

mg/L

Prep Method: None **Basis:**

NA

Analysis Lot:

582180

			Spike		% Rec
Sample Name	Lab Code	Result	Amount	% Rec	Limits
Lab Control Sample	K1801892-LCS	1670	1640	102	85-115

Analytical Report

Client: Transalta Centralia Mining, LLC

Service Request: K1801892 **Date Collected:** 02/28/18 **Project:** LPLF CCR **Sample Matrix:** Water **Date Received:** 02/28/18

Analysis Method: SM 4500-H+ B

Units: pH Units **Prep Method:** Basis: NA None

pН

Sample Name	Lab Code	Result	MRL	Dil.	Date Analyzed	Q	
022818-CCR-I PLF2R	K1801892-001	6.54	_	1	02/28/18 17:19	Н	-

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Transalta Centralia Mining, LLC

Service Request: K1801892

Project LPLF CCR

Date Collected: NA

Sample Matrix: Water

Date Received: NA

Date Analyzed: 02/28/18

Replicate Sample Summary

General Chemistry Parameters

Sample Name:

Batch QC

Units: pH Units

Lab Code:

K1801852-001

Basis: NA

Duplicate Sample

K1801852-

001

Sample

001DUP

Analyte Name Analysis Method

MRL Result

Result

Average RPD RPD Limit

pH SM 4500-H+ B - 7.76 7.68 7.72

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 3/9/2018 4:13:41 PM Superset Reference:18-0000456552 rev 00

QA/QC Report

Transalta Centralia Mining, LLC **Client:**

Service Request: Date Analyzed:

K1801892

Project: Sample Matrix: LPLF CCR Water

Date Extracted:

02/28/18 NA

Lab Control Sample Summary

pН

Analysis Method:

SM 4500-H+ B

pH Units

Prep Method: None

Basis:

NA

Analysis Lot:

Units:

581969

			Spike		% Rec
Sample Name	Lab Code	Result	Amount	% Rec	Limits
Lab Control Sample	K1801892-LCS	8.41	8.41	100	85-115

Metals

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Analytical Report

Client: Transalta Centralia Mining, LLC

Service Request: K1801892 **Date Collected:** 02/28/18 11:15 **Project:** LPLF CCR **Sample Matrix:** Water **Date Received:** 02/28/18 15:45

Sample Name: 022818-CCR-LPLF2R Basis: NA

Lab Code: K1801892-001

Total Metals

Analysis **Analyte Name** Method Result Units MRL Dil. **Date Analyzed** Date Extracted Q 0.363 Boron 6010C mg/L 0.021 03/05/18 11:51 03/01/18 Calcium 6010C 471 mg/L 0.021 1 03/05/18 11:51 03/01/18

Printed 3/7/2018 11:54:57 AM Superset Reference:

Analytical Report

Service Request: K1801892

Client: Transalta Centralia Mining, LLC

Project:LPLF CCRDate Collected:NASample Matrix:WaterDate Received:NA

Sample Name: Method Blank Basis: NA

Lab Code: KQ1802707-02

Total Metals

Analysis **Analyte Name** Method Result Units MRL Dil. **Date Analyzed** Date Extracted Q Boron 6010C ND U mg/L 0.021 03/05/18 11:47 03/01/18 Calcium 6010C 0.025 mg/L 0.021 1 03/05/18 11:47 03/01/18

Printed 3/7/2018 11:54:57 AM Superset Reference:

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Transalta Centralia Mining, LLC

Project

Service Request: K1801892 LPLF CCR **Date Collected:** 02/28/18

Sample Matrix: Water **Date Received:** 02/28/18

Date Analyzed: 03/05/18

Replicate Sample Summary

Total Metals

Sample Name: Units: mg/L 022818-CCR-LPLF2R Lab Code: K1801892-001

Basis: NA

Duplicate Sample Analysis Sample KQ1802707-03 Method Result Result **RPD RPD Limit Analyte Name MRL** Average Boron 0.347 6010C 0.363 0.021 0.355 5 20 Calcium 6010C 471 462 467 2 20 0.021

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 3/7/2018 11:54:57 AM Superset Reference:

QA/QC Report

Client: Transalta Centralia Mining, LLC

Project: LPLF CCR

Sample Matrix: Water

Service Request:

K1801892

Date Collected:

02/28/18

Date Received:

02/28/18 03/5/18

Date Analyzed: Date Extracted:

Units:

Basis:

03/1/18

mg/L

NA

Matrix Spike Summary

Total Metals

Sample Name: 022818-CCR-LPLF2R

Lab Code: K1801892-001

Analysis Method: 6010C

Prep Method:

EPA CLP-METALS ILM04.0

Matrix Spike

KQ1802707-04

Analyte Name	Sample Result	Result	Spike Amount	% Rec	% Rec Limits
Boron	0.363	0.761	0.500	80	75-125
Calcium	471	469	10.0	-16#	75-125

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 3/7/2018 11:54:57 AM Superset Reference:

QA/QC Report

Transalta Centralia Mining, LLC **Client:**

Service Request: K1801892 **Project:** LPLF CCR **Date Analyzed:** 03/05/18

Sample Matrix: Water

> **Lab Control Sample Summary Total Metals**

> > Units:mg/L Basis:NA

Lab Control Sample

KQ1802707-01

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Boron	6010C	0.453	0.500	91	80-120
Calcium	6010C	12.4	12.5	99	80-120

Printed 3/7/2018 11:54:57 AM Superset Reference:

Appendix C WAC Program Fourth Quarter 2010 Monitoring Report

TRANSALTA CENTRALIA MINING LLC LIMITED PURPOSE LANDFILL

FOURTH QUARTER 2010 GROUNDWATER MONITORING REPORT

Prepared by
CH2M Hill
And
TransAlta Centralia Mining LLC

FEBRUARY 2011

This report was developed by TransAlta Centralia Minining LLC, under the supervision of a Geologist licensed in the State of Washington.

Contents

Conter	nts		i		
1.		uction			
	1.1Site Description and Landfill Operations				
		nitoring Program Summary			
2.		oring Program Description			
		nitoring Network			
		undwater Level Measurement and Sampling			
		chate Monitoring and Sampling			
		nple Handling & Analysis			
		d and Laboratory Quality Control			
3.		dwater Monitoring Results			
		undwater Levels and Hydrographs			
		undwater Flow Direction and Hydraulic Gradient			
		undwater Flow Velocity Estimates			
		undwater Quality Results			
		nparison to Applicable Groundwater Quality Criteria			
		a Quality Assessment			
4.		ical Evaluation			
		istical Analysis Regulatory Requirements			
		istical Analysis Procedures			
		istical Evaluation Results			
5.		ary			
6.	Refere	nces	17		
Tables					
Table 2) 1	Currend vivator Manitorina Naturals Construction Community			
Table 2		Groundwater Monitoring Network Construction Summary			
Table 3		Groundwater Analytes, Detection Limits, and Analytical Methods Groundwater Levels and Field Parameters			
Table 3		Groundwater Flow Velocity Estimates			
Table 3		5			
Table 3		Groundwater Quality Results and Criteria Comparison			
Table 4	t-1	Significant Trend Summary			
Figures	6				
Figure	1-1	General Location Map			
Figure	1-2	Site Features and Groundwater Monitoring Network			
Figure		Groundwater Hydrograph and Precipitation			
Figure		Groundwater Flow Direction Map			
Figure		Stiff Diagram			
Append					
Appen		Field Sampling Sheets and Laboratory Analytical Data Package			
Appen		Statistical Analysis Results - Descriptive Statistics and Time Series Plot	S		
Appen		Statistical Analysis Results - Sen's Slope/Mann-Kendall Trend Test			
1 1		, ,			

1

1. Introduction

This report presents results for 4th quarter 2010 groundwater monitoring at the TransAlta Centralia Mining LLC (TCM), Limited Purpose Landfill (LPLF). This report was prepared in accordance with the reporting requirements of Chapter 173-350-500 Washington Administrative Code (WAC). This report summarizes the monitoring results from the 4th quarter 2010 sampling event conducted in December 2010.

1.1 Site Description and Landfill Operations

The LPLF is located near the excavation area for Pit 7 of the Centralia Mine. Figure 1-1 shows the general location of the LPLF. The Pit 7 area has been mined and mine spoils (native overburden removed as part of the coal mining process) backfill was placed in the mined area as mining activities progressed. Figure 1-2 shows the site features and the LPLP groundwater monitoring network.

Construction of Stage 1 of the LPLF began during the summer of 2009 and TCM was authorized to begin waste disposal operations effective October 31, 2009. On December 21, 2009 the Lewis County Environmental Health Department amended the LPLF permit to approve disposal of wastes in Stage 1 area A3a, in addition to areas A1 and A2 which were approved for disposal in the original permit. In 2009 a total of 73,160 cubic yards of waste were disposed in the landfill. Approximately 121,223 cubic yards of wastes were placed in the landfill in 2010, prior to securing the landfill with intermediate cover and drainage control for the winter.

1.2 Monitoring Program Summary

The groundwater monitoring requirements of Chapter 173-350-330(5) WAC prompted TCM, with assistance by CH2M HILL, to conduct subsurface investigation activities at the LPLF, occurring in two successive field investigation efforts. The first site investigation and monitoring well installation effort occurred in October 2007, which resulted in the drilling of three soil borings (SB-1, SB-2, SB-2B) and installation of four monitoring wells (LPLF 1 through LPLF-4).

In August 2008, CH2M HILL returned to the site to advance four additional borings (LPLF-5 through LPLF-8) and perform hydraulic conductivity tests in the spoils backfill and underlying native Skookumchuck formation. The additional borings were converted into groundwater monitoring wells following the hydraulic testing activities. CH2M HILL also performed hydraulic conductivity testing in all eight completed LPLF wells to measure hydrogeologic parameters in the backfill spoils. Details describing the site conditions (conceptual site model) are presented in Section 2.4 of the 2008 permit application. Based on these field investigation findings and the objectives of the monitoring and reporting requirements of Chapter 173-350-500 WAC, the target hydrostratigraphic unit for LPLF groundwater monitoring is the saturated zone in the backfill soils immediately overlying the Skookumchuck contact.

1

Section G of the 2009 TransAlta LPLF permit required annual reporting of the groundwater monitoring results based on the Groundwater Monitoring Plan detailed in Section 8 of the permit application (effective date of October 2008). Baseline groundwater monitoring was performed monthly from November 2007 to September 2009. The baseline monitoring period represents site conditions prior to when wastes were placed into the landfill and are used to characterize the distribution of the data for which future monitoring results may be compared to assess if there may be any potential impact from the landfill. Routine detection monitoring has been conducted monthly from October 2009 through December 2010. The site features and the LPLF groundwater monitoring well network are shown in Figure 1-2.

2. Monitoring Program Description

This section describes the monitoring network and sampling activities performed during the 4th quarter 2010 sampling event. Groundwater monitoring is performed to satisfy the requirements of Chapter 173-350-500 WAC, and in accordance with Section B.3 of the 2009 TransAlta LPLF permit application. The groundwater monitoring program is described in Section 8 of the permit application dated October 2008.

2.1 Monitoring Network

Table 2-1 provides a summary of the LPLF groundwater monitoring well network and construction details. The wells were constructed according to WAC 173-160-400, *Requirements for Resource Protection Well Construction*.

The LPLF monitoring network includes eight groundwater wells completed in the target hydrostratigraphic unit consisting of the following wells: LPLF-1, -2, -3, -4, -5, -6, -7, and LPLF-8. These groundwater monitoring locations were selected to provide adequate stratigraphic and spatial representation of shallow groundwater in the LPLF permit area. An underdrain collection system is also part of the monitoring program which was installed to maintain hydraulic separation between the landfill liner system and seasonal high groundwater. Figure 1-2 shows the locations of these monitoring wells and the sub-grade underdrain monitoring location along the southern extent of the LPLF footprint.

A groundwater flow path analysis and hydraulic designation of the LPLF network was developed in the conceptual site model report (Section 2, Siting and Location, LPLF Engineering Design Report, CH2M HILL 2008). Monitoring wells LPLF-1, -4, -5, and -6 are located upgradient of the LPLF, whereas monitoring wells LPLF-2, -3, -7, and -8 are located laterally and down gradient of the LPLF footprint. The sub-grade drain collection system is located down gradient from the LPLF footprint. The sub-grade drain provides an additional down gradient monitoring location to compliment the LPLF well network. The sub-grade drain was constructed with a vertical sampling catch basin beneath a lateral perforated drainage pipe to allow for groundwater measurement and sampling in a manner consistent with the groundwater monitoring wells.

A leachate collection system was also constructed for the LPLF and is monitored for the same parameters and frequency as the groundwater monitoring wells.

2.2 Groundwater Level Measurement and Sampling

Upon arrival at each well location, the well cap is removed and static depth to water (DTW) is measured in each monitoring well prior to purging. Water-level measurements are read to the nearest 0.01 foot, using an electronic water level indicator probe. The DTW is measured from top of casing (TOC) and compared to the expected DTW range. If the two measurements vary considerably, the water level is measured again for verification.

Each monitoring well is purged before sampling to ensure that sampled groundwater represents conditions of the water-bearing unit. Each well is purged using a "low-flow" (minimal drawdown) groundwater sampling procedure. During purging, field parameters

consisting of pH, temperature, and specific conductivity (SC), are measured at approximate five-minute intervals using a multiple parameter in-line monitoring instrument (Horiba U-22 or equivalent). When the pH and SC indicator parameters have stabilized (i.e., when pH within +/- 10 percent and SC is +/- 10 μ S/cm), samples are collected in laboratory-supplied sample containers at a flow rate of approximately 0.1 liter per minute. Field measurement readings and pertinent sampling information are recorded on dedicated field sampling forms.

The underdrain collection system is monitored during each round of groundwater sampling. Since the underdrain system is gravity-fed, the sampling method includes one set of field parameters (that are not required to stabilize), and the grab sample is collected at the end of the drain pipe.

2.3 Leachate Monitoring and Sampling

Leachate monitoring and sampling for the LPLF began in June 2010. Leachate sampling has been conducted monthly from June 2010 to December 2010. TCM collects grab samples at the entrance of the leachate treatment system. Leachate is analyzed for the same parameters and methods as the groundwater monitoring well samples.

2.4 Sample Handling & Analysis

Table 2-2 shows the field and laboratory analytical parameters for the LPLF monitoring program. Groundwater samples are collected in laboratory-supplied containers. All field parameters and sample identification numbers are recorded in the field sheets and then transferred into the master database.

Sample containers are labeled at the time of collection with the unique sample number, date, and time collected. Sample numbers are recorded on the chain-of-custody (COC) along with the time the sample was collected. The COC is sealed in a clear plastic bag and placed in the cooler, either on top of the samples or taped to the inside lid of the cooler. Coolers are sealed securely with clear tape, and COC seals are attached to the lid. The samples are shipped in ice-chilled coolers overnight to Maxxam Analytics International Corporation, located in Burnaby, British Columbia, Canada. Chain-of-custody forms are signed and filled out for each cooler. The COCs are kept as part of the permanent sampling record.

2.5 Field and Laboratory Quality Control

This section describes the field and laboratory quality control that is implemented in accordance with the Groundwater Monitoring Plan (Section 8 of the LPLF Solid Waste Permit Application, dated October 2008).

Field Quality Control:

Water level indicator probes are decontaminated before and after measuring each monitoring well by spraying it with an alconox/deionized water solution, rinsing with deionized water, and then wiping with paper towels. Sampling supplies and sampling bottles are handled using clean (new) disposable nitrile or latex gloves upon arrival at each sampling location.

Wells are purged and sampled using a low-flow peristaltic pump with variable controlled flow rates and dedicated sampling tubing. A dedicated sampling line is used to avoid generating increased turbidity in the sample.

Laboratory Quality Control:

Details of the laboratory quality control are prescribed in the Groundwater Monitoring Plan and are not reiterated herein.

3. Groundwater Monitoring Results

Monitoring results for the 4th quarter (December 2010) sampling event are summarized below.

3.1 Groundwater Levels and Hydrographs

The depth to water and groundwater elevation data for the December 2010 event are summarized in Table 3-1. Groundwater elevations were calculated by subtracting the measured static depth to water from the surveyed top-of-casing elevations relative to the local vertical datum (NGVD29).

Groundwater elevation hydrographs and monthly precipitation data are presented in Figure 3-1. The site hydrograph was developed using monthly water level measurements initiated November 2007 through December 2010. As shown on the site hydrograph, monitoring wells LPLF-1 and LPLF-5 are intermittently dry, particularly during the late summer or fall months. Monitoring wells LPLF-6 and LPLF-7 have been dry since their installation in September 2008. A distinct correlation between precipitation and groundwater elevation changes is not readily apparent. However, there may be a limited correlation between the seasonal low precipitation cycle typically occurring in July through August, which may correspond to the period when some of the wells are dry (i.e., particularly LPLF-1 and -5). There do not appear to be any significant temporal trends in groundwater levels over the period of record (roughly 3 years). The most-recent groundwater elevations measured in December 2010 are consistent with previous observations.

Precipitation data is obtained from TCM's meteorological station located approximately 8,000 feet northwest of the LPLF. The data is collected on hourly intervals but for reporting purposes TCM has summarized the data as monthly totals in Figure 3-1.

3.2 Groundwater Flow Direction and Hydraulic Gradient

The December 2010 groundwater level measurements in the LPLF well network and the interpreted potentiometric surface are presented in Figure 3-2. Based on the interpreted potentiometric surface, the groundwater flow direction in the vicinity of the LPLF is to the southwest.

As illustrated in Figure 3-2, the December 2010 groundwater levels and distances between LPLF-5 and LPLF-8 were used to estimate the hydraulic gradient at 0.070 ft/ft. The southwesterly flow direction and hydraulic gradient measured during the December 2010 event are generally consistent with the hydraulic conditions as presented in Section 2 of the *LPLF Engineering Design Report, Transalta Centrailia Mining LLC* (CH2M HILL, 2008). The groundwater flow direction and hydraulic gradient will be evaluated during each quarterly sampling event.

3.3 Groundwater Flow Velocity Estimates

Groundwater flow velocity estimates can be made using the following formula (obtained from Fetter, 1994):

$$v = \frac{K_a i}{n_e} *365$$

where:

v = estimated groundwater seepage velocity (ft/year)

 K_a = horizontal hydraulic conductivity (ft/day)

i = horizontal hydraulic gradient (ft/ft; dimensionless)

 n_e = effective porosity (dimensionless)

Table 3-2 presents the estimated groundwater seepage velocity and hydraulic parameters for the December 2010 sampling event. The estimated groundwater seepage velocity of 11 feet/year is relatively slow and correlates well with the fine-grained backfill spoils that comprise the uppermost hydrostratigraphic unit. As described in Section 3.2 (above), the hydraulic gradient was calculated for the December 2010 event, whereas the other hydrogeologic parameters were established in Section 2 of the *LPLF Engineering Design Report*, *Transalta Centrailia Mining LLC* (CH2M HILL, 2008).

3.4 Groundwater Quality Results

Groundwater quality results for the December 2010 monitoring event are summarized in Table 3-3. Field sampling sheets and laboratory analytical reports are presented in Appendix A. As shown in Table 3-3, the groundwater quality results include values for the entire LPLF well network, the underdrain collection system, and leachate. Samples from LPLF-6 and -7 have not been collected since these wells have been dry since their installation in September 2008. Groundwater quality results are organized into field measurements, general chemistry, major ions, and dissolved metals. The analytical parameters and their respective analytical test method are summarized in Table 2-2.

Stiff diagrams for the December 2010 event have been generated using the *Sanitas* software and are shown in Figure 3-3. Stiff diagrams are a graphical method to facilitate interpretation and presentation of the major ions present in a water quality sample. Stiff diagrams are particularly useful to visually compare the chemical composition of water quality among the LPLF well network. Stiff diagrams present the water quality results expressed in milliequivalents per liter, and they account for the ionic charge and formula weight for primary ions. The primary cations include sodium + potassium, calcium, and magnesium; whereas the primary anions include chloride, sulfate, and bicarbonate.

As shown in Figure 3-3, the chemical composition of LPLF-2, -3, and -4 exhibit an overall lower abundance of ions, whereas LPLF-1, -5, -8, and the Underdrain collection system exhibit a relatively higher overall abundance of ions. The Stiff plots illustrate a calcium and sulfate rich groundwater chemistry that is consistent with spoils wells located elsewhere within the mine site. Higher concentrations of calcium and sulfate are observed in both upgradient wells (LPLF-1 and LPLF-1) and downgradient locations (LPLF-8 and Underdrain) in comparison to the levels observed in the leachate. The calcium and sulfate signatures are more indicative of

heterogeneous distribution of spoils materials in the backfill, which appears to be localized in the vicinity of some of the LPLF monitoring locations.

3.5 Comparison to Applicable Groundwater Quality Criteria

Groundwater quality criteria applicable to the *Solid Waste Handling Standards*, Chapter 173-350, WAC, are the maximum contaminant levels (MCL's) as specified in Chapter 173-200, WAC for groundwater in the State of Washington. These MCL criteria for groundwater are also cited in the *TransAlta Centrailia Mining LLC*, *Solid Waste Handling Facility Permit* (amended on December 30, 2010).

Table 3-3 provides a summary of the December 2010 results and identifies those wellsconstituents which exceed the Chapter 173-200 WAC criteria (exceedances highlighted in bold font). A discussion of the December 2010 MCL exceedances for the LPLF well network and Underdrain collection system (excluding leachate) are provided below.

- Hydrogen Ion Activity (pH criteria/range 6.5-8.5): pH is below the criteria in LPLF-2,
 -5, LPLF-8, and the Underdrain.
- Total Dissolved Solids (criteria is 500 mg/L): exceeds criteria in all wells, except for LPLF-4.
- Iron (criteria is 0.3 mg/L): exceeds criteria in LPLF-1, -2, -8, and the Underdrain.
- Sulfate (criteria is 250 mg/L): exceeds criteria at all locations, except for LPLF-3 and LPLD-4.
- Arsenic (criteria is 0.00005 mg/L): exceeds the criteria at all locations.
- Manganese (criteria is 0.05 mg/L): exceeds the criteria at all locations.

Exceedances of the groundwater criteria would not be considered to be attributed to a potential landfill source if the following occur:

- If the criteria are exceeded during the background monitoring period (i.e., prior to waste placement into the LPLF cell), and
- If the criteria are exceeded in upgradient monitoring locations, these exceedances would also be expected in downgradient locations and would not be attributed to the landfill.

Based on this decision logic, there are no groundwater quality exceedances of the Chapter 173-200 WAC criteria that are considered to originate from the LPLF. These wells- constituents and the criteria evaluation will be tracked in future sampling events. If necessary, the leachate sampling data may also be compared to the groundwater criteria to help troubleshoot any unexpected results observed in the groundwater monitoring wells. It should be noted that leachate monitoring results compared to water quality criteria had exceedances for pH (but at greater than 8.5, opposite than detected in wells), and selenium is not detected in any of the groundwater monitoring wells. Other criteria were exceeded in the leachate, but at values within the range of and lower than the monitoring well results.

8

3.6 Data Quality Assessment

Data quality may be assessed by the cation-anion balance and is required under the Chapter 173-350 WAC reporting requirements. A cation-anion balance is performed by converting all the ionic concentrations to units of milliequivalents per liter. The anions and cations are summed separately, and the results are compared. Assuming the waters are generally in equilibrium, if the sum of the cations is not within 10 percent of the sum of the cations, then there may be a problem with the chemical analyses, or there may be one or more ionic species that are present in significant quantities are not being included in the chemical analyses (Fetter, 1994).

Table 3-3 presents the *ion balance* as calculated by the analytical testing laboratory (*Maxxam Analytics International Corporation*) for the December 2010 sampling event. Using the constituent values in milligrams per liter, the ion balance is calculated as follows:

Total Cations (in meq/L) =

(NA*0.04350)+(CA*0.04990)+(MG*0.08229)+(K*0.02558)+(FE*0.03581)+(MN*0.03640)+(NH4*0.07140)

Total Anions (in meq/L) =

(CL*0.02821) + (SO4*0.02082) + (CO3*0.03333) + (HCO3*0.01639) + (OH*0.05880) + (PO4*0.09594) + (F*0.05264) + (SIO2*0.02629) + (NO2NO3*0.07140)

Ion Balance =

Total Cations / Total Anions

As shown in Table 3-3, the ion balance for the December 2010 event was equal to or greater than 0.9 for all wells (equivalent to a percent difference of less than 10 percent). A threshold of 10 percent (or equal to or greater than an ion balance of 0.9) is considered acceptable in consideration that all ionic species many not be accounted for, and that there is some inherent error that may be attributed to field and/or laboratory methods.

4. Statistical Evaluation

This section provides a summary of the statistical evaluation procedures and results for the LPLF groundwater monitoring program. These statistical findings are inclusive of monitoring results collected from November 2007 to the most-recent 4th quarter sampling event concluded in December 2010.

4.1 Statistical Analysis Regulatory Requirements

The primary purpose of statistically analyzing the LPLF monitoring data is to assist with an unbiased identification of any potential impacts to groundwater that may be attributable to a potential leak from the LPLF cell. Statistical analysis of the LPLF water quality results are performed to satisfy the requirements of the limited purpose landfill Solid Waste Handling Standers, per *Chapter 173-350-500(5) WAC*, *Groundwater Monitoring – Data Analysis*, *Notification, and Reporting*. Statistical analyses are also required as stated in the *TransAlta Centralia Mining LLC Limited Purpose Landfill Solid Waste Facility Permit* (dated December 30, 2010), noting that "the Permittee shall perform an appropriate statistical evaluation of all groundwater and sub-grade drain monitoring data capable of revealing any increases over background for parameters and constituents tested." The statistical analyses presented herein are performed to satisfy these regulatory requirements.

4.2 Statistical Analysis Procedures

The statistical analysis approach and procedures for the LPLF groundwater monitoring program were selected to satisfy the regulatory requirements (noted above), and in consideration of the LPLF site conditions as presented in Section 2 of the LPLF Engineering Design Report, TransAlta Centralia Mining, LLC (CH2M HILL 2008). The statistical analyses include the following three categories:

- Descriptive Statistics:
 - Descriptive Statistics (includes baseline date range only)
 - Time-Series Concentration Plots (inclusive of all wells-constituents for the entire period of record)
- Trend Evaluation using the Sen's Slope/Mann-Kendall Method (includes all data)
- Statistical Test for Increase of Conditions over Background (pending exploratory analysis; test method and approach will be presented in the 2010 Annual Report)

A summary of the approach and assumptions for these statistical analyses is provided below. The statistical analyses presented herein have been performed using *Sanitas Statistical Software*, Version 9.1.

Descriptive statistics:

Descriptive statistics include calculated values for mean concentration, standard deviation, variance, minimum and maximum, number of observations (sampling events), and percentage non-detect. Descriptive statistics were calculated for all wells and constituents in the LPLF dataset for the baseline monitoring period (November 2007 to September 2009). This period represents "background" conditions in consideration that it precedes placement of waste into the LPLF cell, thus precluding any potential adverse influence from landfill activities (such as leakage to shallow groundwater). Thus, it is the underlying assumption that the background dataset are not influenced by landfill activities. Descriptive statistics have been calculated for the background period to assist with a comparison to future sampling results (and as required for routine detection monitoring).

In addition, time-series concentration plots are a graphical presentation of the temporal dataset. These plots provide a method to quickly view relative changes in data at a particular well-constituent through time. Time-series concentration plots are useful to display the variability in concentration over time, assist with identification of potential outliers, can be used to assess potential seasonal patterns, and may compliment or cross-check the statistical tests used for the detection or assessment monitoring program (such as trend test or increase of conditions over background, described subsequently).

Trend Evaluation:

A "trend" is the general increase or decrease in observed values of some random variable over time (in our case groundwater concentration for the parameters of interest). A trend analysis can be used to determine the significance of an apparent trend and to estimate the magnitude of that trend.

The Mann-Kendall test for temporal trend and Sen's Slope estimate were used to evaluate the correlation of constituent concentrations through time. The Mann-Kendall test is a nonparametric test, meaning that it does not depend on the assumption of a particular underlying distribution of the dataset (Gilbert, 1987). The test uses only the relative magnitude of data rather than actual values, therefore, the test is well suited for irregular data collection frequencies and/or data gaps, which is often the case in environmental monitoring programs. In addition, non-detects may be included in the analysis and are typically assigned values equal to one-half their method detection limit (Gilbert, 1987).

The Mann-Kendall test for trend procedure was performed on the LPLF dataset. At this time, the trend test approach assumes all well-constituent pairs for the entire period of monitoring from November 2007 through December 2010. Considering the relatively slow groundwater seepage velocity and expectantly slow response to see changes in groundwater quality, the entire dataset was included for the initial test for trend. As the monitoring program matures and the results are routinely evaluated, the trend procedure and applicable date range may be adjusted to include a more recent or fixed window of observations. In addition, in consideration of the site conditions (i.e., fill materials or mine spoils), the groundwater conditions may be expected to exhibit changing conditions over the life of landfill and post-closure monitoring period. Therefore, for the LPLF monitoring program, it will be important to track and consider site-wide changes (i.e., in both upgradient and downgradient locations) while evaluating if there may be a potential adverse influence from landfill activities.

Non-detects were included in the trend test if the number of detects (N) in the given well-constituent pair met a minimum detection frequency set to 10 percent; well-constituent pairs with a detection frequency less than 10 percent were not evaluated. This approach excludes cases which are predominantly non-detect and are therefore not suitable to assess temporal changes. *Sanitas* uses one-half the method detection limit for instances when non-detects are included in the evaluation. It should also be re-iterated that the well network was installed in two separate phases, therefore, at this time the number of observations for the initial phase of wells is typically 38, whereas the second phase of wells have a total of 17 sampling observations. The test for trend (via Mann-Kendall) may be influenced by the relative number of observations, therefore, the trend results performed for the LPLF dataset for the entire period of monitoring may not have a homogeneous statistical significance. As mentioned above, as the monitoring program matures, a more recent window of observations may be included in future trend analyses, which would result in a consistent number of observations and provide for a more balanced result.

Increase of Conditions over Background:

In compliance with the Chapter 173-350-500 WAC reporting requirements, a statistical procedure will be developed and presented in the 2010 Annual Report to routinely evaluate if an increase (or change) of conditions has occurred in comparison to the background dataset. The statistical test will be selected based on the outcome of an exploratory data evaluation that is currently being performed. The site conceptual model will be used along with the results from the exploratory data analysis to select a detection monitoring procedure (statistical test) that is suitable for the LPLF groundwater monitoring program.

The exploratory data analysis will include an evaluation of the distribution and characteristics of the data, test for seasonality, test for outliers, and consider any temporal or spatial site variability for the parameters of interest. Results from the exploratory data analysis will be used to support weather an inter-well or intra-well comparison is suitable, and then select the appropriate statistical test (such as Control Charts, Prediction Limits, Tolerance Limit, etc). The preferred method will be described and presented to Ecology in the 2010 Annual Report, and upon concurrence, will be included in the amended groundwater monitoring plan.

4.3 Statistical Evaluation Results

This section presents the statistical evaluation results that have been performed on the dataset through the 4th quarter December 2010 sampling event.

Descriptive Statistics:

Descriptive statistics were generated in *Sanitas* for the baseline data collection period (November 2007 to September 2009) and are included in Appendix B. These results represent monthly measurements prior to landfill activities and may be used in comparison to future sampling events to assess for potential impacts to shallow groundwater. The number of observations (N) for the initial phase of wells (LPLF-2, -3, and -4) represent 23 events, whereas the number of observations for the second phase of wells (LPLF-1, -5, and -8) is a reduced number of observations ranging from 6 to 12 events. The Underdrain and leachate collection system are not included in Appendix B since they were installed after the baseline monitoring period.

Time-series concentration plots were also generated using *Sanitas* and are also included in Appendix B (following the descriptive statistics). As noted in Section 4.2, these plots help to

visualize the range and temporal characteristics in the dataset, and may be used to support the subsequent test for trend and/or change of conditions over background (described in sections below). One of the noteworthy characteristics is that well LPLF-5 (background well) shows a significant increase in numerous constituents occurring in summer of 2009. The increase in several parameters believed to represent this well becoming fully saturated and geochemically equilibrating with the primary hydrostratigraphic unit of interest. Therefore, groundwater quality results after the summer of 2009 are believed most representative of the baseline conditions for LPLF-5.

Trend Evaluation Results:

The Mann-K trend results (tabulated results), along with the Sens-Slope estimator (graphic plots) are included in Appendix C. All cases were included for analysis, provided each well-constituent pair met the minimum number of detects set to greater than 10 percent (to exclude cases which were predominantly non-detect). The trend test was performed with a confidence level set to 95 percent (or an alpha of 5 percent), which means that there is a 5 percent chance that the statistical test result is incorrectly assigned.

A summary of the significant trend results (either increasing or decreasing trend) has been compiled in Table 4-1. Of all the cases tested, a total of 78 cases are statistically significant; 30 of which are increasing, and 48 are decreasing at 95 percent confidence level. Of the increasing trends, the majority are from upgradient wells such as LPLF-1, -4, and -5.

Given the relatively recent hydrogeologic depositional setting (spoils backfill) and recent cell construction activities, it is to be expected that trends are occurring site-wide during the active life and post-closure monitoring period. In addition, the trend procedure included data which spans the baseline monitoring period, LPLF construction, and into the initial period of waste placement activities, thus, any trends identified would not be wholly indicative of a potential influence from landfill source materials. Given the relatively early stages of monitoring, combined with relatively slow groundwater seepage velocity, the trend results may be used to compliment the comparison to groundwater criteria (per Section 3.4) and if there may be a potential increase of conditions over background (as described below). Trend results alone, however, should not solely be used to assess potential adverse influences from the landfill.

Increase of Conditions over Background:

As mentioned above, this section is currently a placeholder for future reporting efforts. The statistical procedure to test for an increase of conditions over background will be developed and included in the forthcoming 2010 Annual Report.

5. Summary

Key findings developed from the 4th quarter (December 2010) monitoring results are summarized below.

- Groundwater in the uppermost hydrostratigraphic unit beneath the LPLF landfill
 generally flows to the southwest. This general flow direction is consistent with previous
 observations as presented in the 2008 permit application.
- Groundwater quality exceedances of the Chapter 173-200 WAC criteria were observed for the following constituents and locations:
 - Hydrogen Ion Activity (pH criteria/range 6.5-8.5): pH is below the criteria in LPLF-2, -5, LPLF-8, and the Underdrain.
 - Total Dissolved Solids (criteria is 500 mg/L): exceeds criteria in all wells, except for LPLF-4.
 - Iron (criteria is 0.3 mg/L): exceeds criteria in LPLF-1, -2, -8, and the Underdrain.
 - Sulfate (criteria is 250 mg/L): exceeds criteria at all locations, except for LPLF-3 and LPLD-4.
 - Arsenic (criteria is 0.00005 mg/L): exceeds the criteria at all locations.
 - Manganese (criteria is 0.05 mg/L): exceeds the criteria at all locations.

None of these exceedances are attributed to a landfill-related source given they occurred during the background monitoring period and/or in upgradient monitoring wells. These constituents and their concentrations will be tracked in future reporting efforts.

- Trend results from the Mann-Kendall method revealed a number of significant cases, both increasing and decreasing, for the period tested. Trend analyses will be performed on a quarterly basis to compliment other analyses (such as comparison to MCL's, and to support the detection monitoring program).
- An exploratory data analysis is currently in process to assist with selection of a suitable statistical test to evaluate if there has been a change of condition over background. Results from the exploratory analysis will be presented in the 2010 Annual Report. Upon agency concurrence, the recommended statistical approach and methods will be incorporated into the routine LPLF monitoring and reporting program, and documented in the amended groundwater monitoring plan to be submitted by July 1, 2011.

6. References

Fetter, 1994. Applied Hydrogeology, Third Edition.

Gilbert, R.O., 1987. Statistical Methods for Environmental Pollution Monitoring. Van Nostrand Reinhold.

Puls, R.W., and Barcelona, M.J., 1996, *Low-Flow (minimal drawdown) Groundwater Sampling Procedures*, United States Environmental Protection Agency, Groundwater Issue Reference Document No. EPA/540/S-95/504.

Requirements for Resource Protection Well Construction, Chapter 173-160-400, Washington Administrative Code.

Sanitas™ Version 9.1. Statistical software used to evaluate groundwater data for RCRA Subtitle C and D facilities.

Solid Waste Handling Standards, Chapter 173-350, Washington Administrative Code.

TransAlta Centralia Mining LLC, Limited Purpose Landfill Solid Waste Permit Application, dated October 2008.

TransAlta Centralia Mining, LLC, Solid Waste Handling Facility Permit, amended on December 30, 2010.

Water Quality Standards for Ground Waters in the State of Washington, Chapter 173-200 Washington Administrative Code.

TABLE 2-1 Groundwater Monitoring Well Construction Summary

			Top of	Reference Point Top of Ground	Well Scree	n Elevation	Sand Pacl	k Elevation	Well
Well	Northing ¹	Easting ¹	Casing	Elevation ²	Тор	Bottom	Тор	Bottom	Depth ³
LPLF-1	520,881.45	1,420,272.06	347.80	344.58	305.58	285.58	309.58	282.58	59
LPLF-2	521,560.80	1,418,888.82	302.26	298.32	283.32	263.32	288.32	260.32	35
LPLF-3	521,923.64	1,419,157.72	295.64	291.69	281.69	261.69	283.69	258.69	30
LPLF-4	522,146.70	1,419,339.00	303.12	299.60	287.6	282.6	290.6	279.6	17
LPLF-5	521,931.70	1,419,921.73	359.90	357.88	349.88	344.88	351.38	343.38	13
LPLF-6	521,408.14	1,420,291.02	358.60	356.39	339.39	334.39	341.39	331.39	22
LPLF-7	521,032.26	1,419,527.54	303.84	301.28	289.28	284.28	291.28	281.28	17
LPLF-8	521,235.37	1,419,233.53	298.75	296.93	279.93	274.93	282.93	273.93	22

Washington State Plane Coordinates (NAD27)

Reference point elevation is top ground; all elevations in feet above mean sea level (NGVD29)

Well depth is feet below ground surface

TABLE 2-2 Groundwater Analytes, Detection Limits, and Analytical Methods *December 2010*

Analytes ¹	Detection Limits	Analytical Method
Field Determinations		
Temperature	0.1 °C	Electronic Field Probe
рH	0.01 units	SM4500-H+
Specific Conductance	1 μmhos/cm	SM2510B Field Probe
Laboratory Determinations	·	
Total Dissolved Solids	10 mg/l	2540C
Carbonate Alkalinity	2 mg/l	SM2320B
Bicarbonate Alkalinity	2 mg/l	SM2320B
Ammonia	0.1 mg/l	E350.3
Boron	100 μg/l	SW6010
Chloride	0.5 mg/l	300
Fluoride	1.0 mg/l (distilled) or 0.1 mg/l	340.2
	(undistilled)	340.2
Dissolved Sulfate (SO ₄)	0.5 mg/l	300.1
Dissolved Sulfite (SO ₃)	2 mg/l	377.1
Nitrate (NO ₃)	0.1 mg/l	E353.2
Total and Dissolved Arsenic	0.001 mg/l	6020A
Total and Dissolved Barium	0.001 mg/l	6010B
Total and Dissolved Cadmium	0.005 mg/l	6020A
Total and Dissolved Chromium	0.001 mg/l	6010B
Total and Dissolved Calcium	0.05 mg/l	6010B
Total and Dissolved Iron	0.005 mg/l	6010B
Total and Dissolved Lead	0.0005 mg/l	6020A
Total and Dissolved Magnesium	0.05 mg/l	6010B
Total and Dissolved Mercury	0.00005 mg/l	7471A
Total and Dissolved Manganese	0.001 mg/l	6010B
Total and Dissolved Potassium	1 mg/l	6010B
Total and Dissolved Selenium	0.001 mg/l	6020A
Total and Dissolved Silver	0.0001 mg/l	6020A
Total and Dissolved Sodium	0.05 mg/l	6010B
Total and Dissolved Zinc	0.005 mg/l	6010B
Cation/Anion Balance	NA	Calculated

The list of analytes are site-specific for the LPLF as presented in the Groundwater Monitoring Plan (Section 8 of the LPLF Solid Waste Permit Application) and includes the parameters as required under Chapter 173-350-500, Washington Administrative Code (WAC).

Table 3-1Groundwater Levels and Field Parameters
December 2010

Well	Date Sampled	Reference Point (ft)	Depth to Water (ft)	Groundwater Elevation (ft)	Temp (°C)	Hq	Conductivity (uS/cm)	Comments
LPLF-1	13 Dec 2010	344.58	55.39	289.19	12.90	6.50	4553	
LPLF-2	13 Dec 2010	298.32	6.11	292.21	11.9	6.4	1212	
LPLF-3	13 Dec 2010	291.69	1.49	290.20	11.9	6.8	1089	
LPLF-4	13 Dec 2010	299.66	2.00	297.66	11.60	7.10	396	
LPLF-5	13 Dec 2010	357.88	10.61	347.27	13.8	6.4	2814	
LPLF-6	13 Dec 2010	356.39	22.00	< 334.39	-	-	-	Dry at time of measurement; value represents well bottom
LPLF-7	13 Dec 2010	301.28	17.00	< 284.28	-	-	-	Dry at time of measurement; value represents well bottom
LPLF-8	13 Dec 2010	296.93	15.69	281.24	13.1	5.2	3351	
Leachate	13 Dec 2010	NA	NA	NA	12.3	9.3	1804	
Underdrain	13 Dec 2010	NA	NA	NA	10.0	6.1	2184	

Reference point elevation is top of ground.

All elevations in feet above mean sea level (NGVD29).

TABLE 3-2 Groundwater Flow Velocity Estimates December 2010

Description:	Hydraulic Parameter for LPLF-5 & LPLF-8
Groundwater Elevation (ft) (upgradient well)	347.27
Groundwater Elevation (ft) (downgradient well)	278.43
Distance between wells (ft)	982
Hydraulic Gradient (i)	0.0701
Mean Hydraulic Conductivity (K) (ft/day)	0.111
Groundwater Flow Velocity Est. (ft/year)	11

Groundwater Velocity Equation (Fetter, 1994):

$$v = \frac{K_{a} i}{n_{a}} * 365$$

v - velocity (ft/year)

 K_a - mean hydraulic conductivity of LPLF-5 & LPLF-8 (reference Section 2.4.5 of the October 2008 permit application).

i - gradient (ft/ft)

 n_e - effective porosity (25% - assumed value)

TABLE 3-3
Analytical Results and Criteria Comparison
December 2010

December 201						Monitori	ng Wells				Other Monito	ring Locations	WAC
Chemical			LPLF-1	LPLF-2	LPLF-3	LPLF-4	LPLF-5	LPLF-6	LPLF-7	LPLF-8	Leachate	Underdrain	173-200
Group	Analyte	Unit	(UG)	(DG)	(DG)	(UG)	(UG)	(UG)	(DG)	(DG)	(DG)	(DG)	Criteria
Field	Temperature	°C	12.9	11.9	11.9	11.6	13.8	na	na	13.1	12.3	10.0	-
Field	Conductivity	uS/cm	4553	1212	1089	396	2814	na	na	3351	1804	2184	-
Field	рН	unit	6.5	6.4	6.8	7.1	6.4	na	na	5.2	9.3	6.1	6.5-8.5
Gen. Chem.	Bicarbonate	mg/L	1300	400	720	300	540	na	na	120	45	230	-
Gen. Chem.	Carbonate	mg/L	<0.5	<0.5	<0.5	<0.5	<0.5	na	na	<0.5	10	<0.5	-
Gen. Chem.	Ammonia (as N)	mg/L	0.42	0.77	0.8	0.1	0.27	na	na	5.3	0.68	1.1	-
Gen. Chem.	Total Dissolved Solids	mg/L	4200	1200	880	310	3400	na	na	3900	1900	2800	500
Gen. Chem.	Total Organic Carbon	mg/L	4.5	<0.5	2	1.6	1.1	na	na	3.3	13.6	3.8	-
Gen. Chem.	Flouride	mg/L	0.12	0.05	0.09	0.24	0.21	na	na	0.12	0.84	0.15	4
Gen. Chem.	Ion Balance		0.9	0.92	1	0.96	1.1	an	na	0.98	1	1.1	-
Major Ion	Calcium	mg/L	352	206	55	13	623	na	na	448	249	383	-
Major Ion	Chloride	mg/L	7.4	4	6.3	3.9	7.4	na	na	11	18	9.7	250
Major Ion	Iron	mg/L	4.374	3.17	0.197	0.037	0.28	na	na	487	0.14	12.8	0.3
Major Ion	Magnesium	mg/L	102	13.1	15.5	5.7	163	na	na	169	20.4	149	-
Major Ion	Nitrate (as N)	mg/L	3.46	< 0.02	< 0.02	0.2	0.04	na	na	< 0.02	1.29	< 0.02	10
Major Ion	Potassium	mg/L	17.8	5.1	4.8	1.8	8.1	na	na	12.7	45.5	13.7	-
Major Ion	Sodium	mg/L	1090	96	261	97	124	na	na	181	246	170	-
Major Ion	Sulfate	mg/L	2900	660	180	26	1800	na	na	3000	1200	1600	250
Major Ion	Nitrite	mg/L	0.055	< 0.005	< 0.005	< 0.005	< 0.005	na	na	0.033	0.12	< 0.005	-
Major Ion	Nitrate/Nitrite	mg/L	3.51	< 0.02	< 0.02	0.2	0.04	na	na	0.05	1.41	< 0.02	-
Trace Metal	Arsenic	mg/L	0.0004	0.0002	0.0002	0.0003	0.0003	na	na	0.0092	0.0021	0.0006	0.00005
Trace Metal	Barium	mg/L	0.02	0.043	0.117	0.076	0.028	na	na	0.015	0.132	0.025	1
Trace Metal	Boron	mg/L	0.822	0.157	0.264	0.298	0.194	na	na	0.928	2.54	0.742	-
Trace Metal	Cadmium	mg/L	0.00038	0.00004	0.00006	0.00002	0.0005	na	na	0.00022	0.00015	0.00053	0.01
Trace Metal	Chromium	mg/L	< 0.004	< 0.001	< 0.001	< 0.001	< 0.002	na	na	< 0.002	0.029	< 0.001	0.05
Trace Metal	Lead	mg/L	<0.0008	< 0.0002	< 0.0002	< 0.0002	< 0.0004	na	na	< 0.0004	< 0.0002	< 0.0002	0.05
Trace Metal	Manganese	mg/L	0.451	1.01	0.864	0.052	5.09	na	na	10.1	0.22	9.64	0.05
Trace Metal	Mercury	mg/L	<0.00008	< 0.00002	< 0.00002	< 0.00002	< 0.00004	na	na	< 0.00004	<0.00002	< 0.00002	0.002
Trace Metal	Selenium	mg/L	< 0.0004	< 0.0001	< 0.0001	< 0.0001	< 0.0001	na	na	< 0.0004	0.0184	0.0001	0.01
Trace Metal	Silver	mg/L	<0.00008	< 0.00002	< 0.00002	< 0.00002	< 0.00004	na	na	< 0.00004	<0.00002	< 0.00002	0.05
Trace Metal	Zinc	mg/L	0.037	0.006	< 0.005	< 0.005	0.098	na	na	0.57	< 0.005	0.204	5
	II.		•										•

Groundwater samples collected December 13, 2010

LPLF-6 & LPLF-7: Dry Wells

All metals results are dissolved concentrations. Although sample water was field filtered, the laboratory reported iron as total iron.

"UG" = upgradient well; "DG" = downgradient well; (relative to respective landfill area).

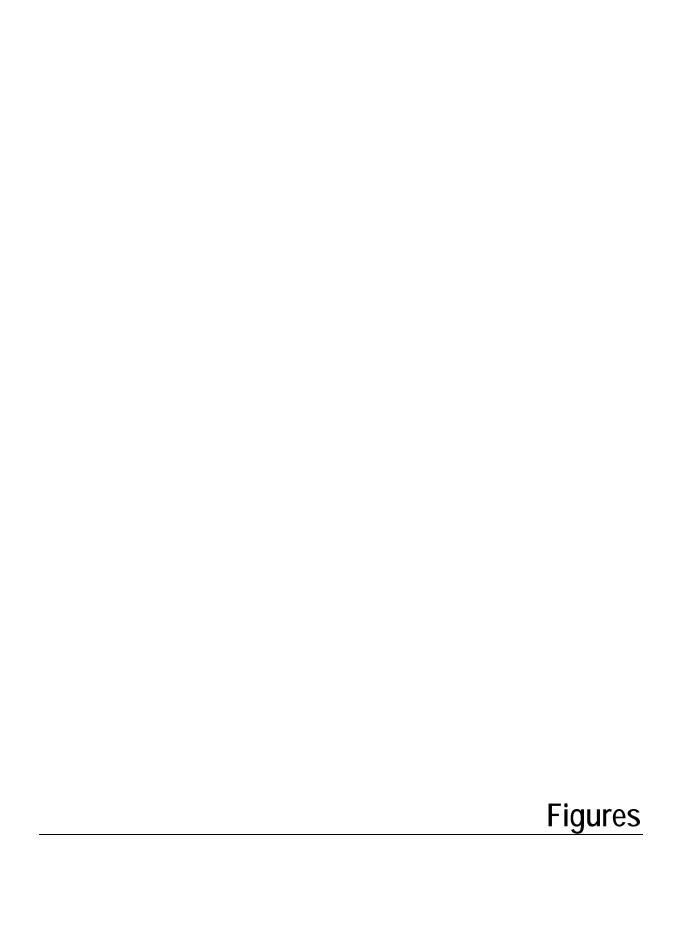
Non-detect values preceded with "<" symbol; non-detect value is laboratory reporting limit. "J" = estimated concentration below laboratory reporting limit.

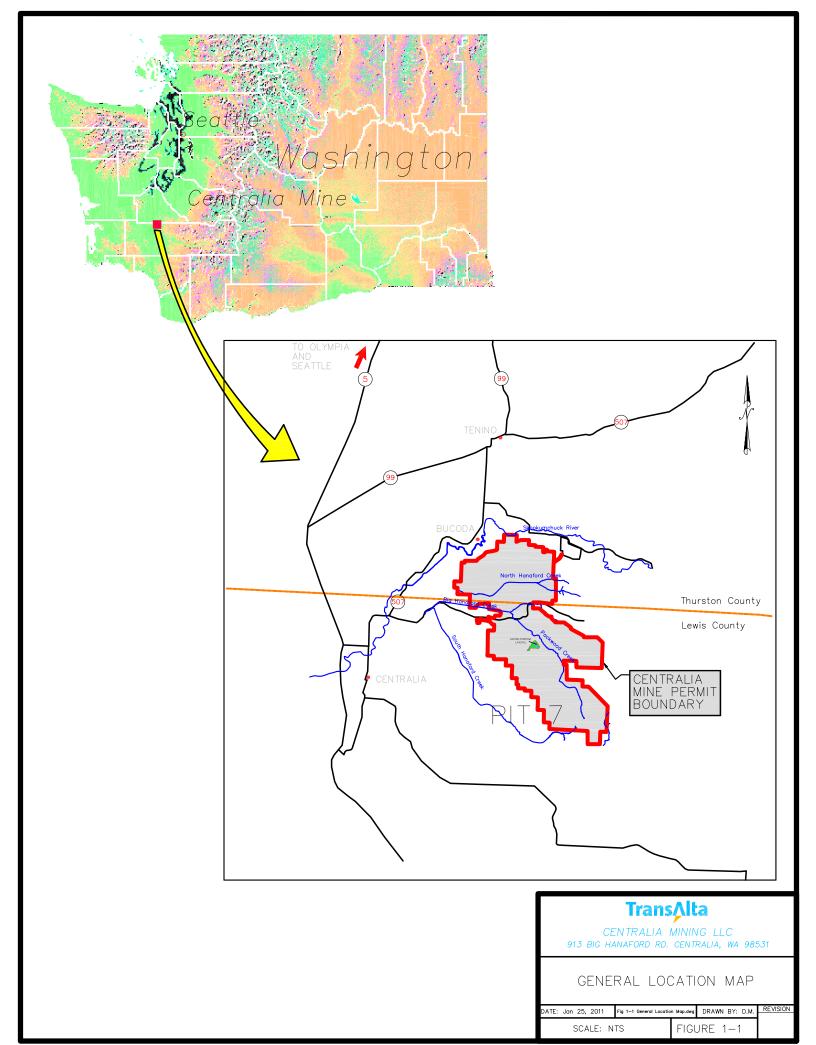
Bold values indicate concentrations at or above established WAC 173-200 criteria.

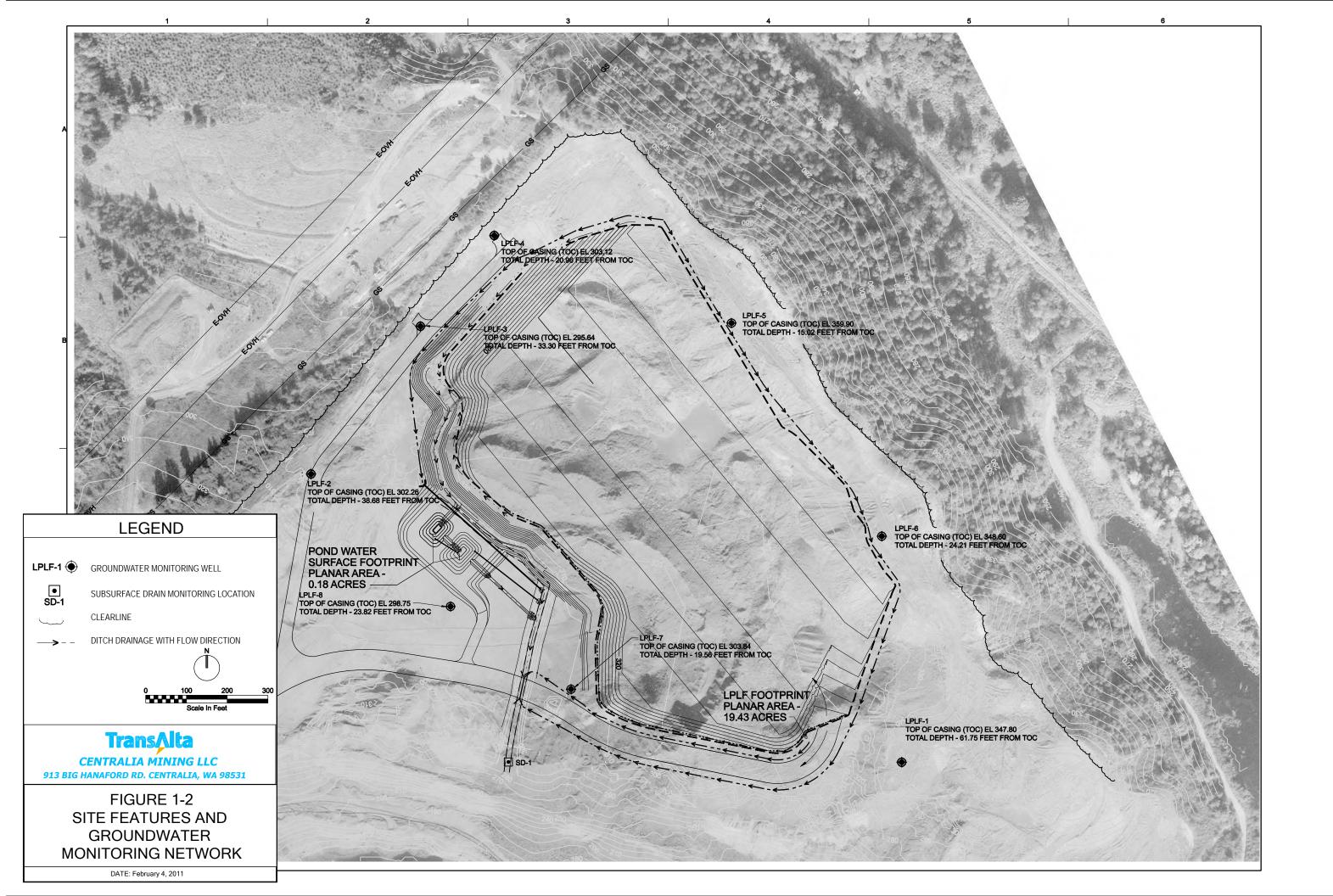
Ion Balance is calculated by testing laboratory as described in Section 3.6

TABLE 4-1 Significant Trend Summary - December 2010

9 414 4 1 4		<u> </u>		- ·		
Constituent Name	Well LPLF1 (bg)	Slope 327.7	Mann-Kendall	Critical Value Trend 49 Yes	N 17	Alpha 0.05
Sulfate (mg/L) Specific Conductance (uS/cm)	LPLF1 (bg) LPLF1 (bg)	312.5	95 74	49 Yes	17	0.05
Bicarbonate (mg/L)	LPLF1 (bg)	47.1	454	158 Yes	38	0.05
Specific Conductance (uS/cm)	LPLF3 LPLF4 (bg)	41.54	283	156 Yes	38	0.05
Magnesium (mg/L)	Leachate	33.88	18	156 Yes	7	0.05
Bicarbonate (mg/L)	LPLF2	29.8	230	15 Tes 158 Yes	38	0.05
Bicarbonate (mg/L)	LPLF2 LPLF4 (bg)	22.08	307	158 Yes	38	0.05
TDS (mg/L)	LPLF4 (bg) LPLF4 (bg)	16.98	182	156 Yes	38	0.05
Dis. Hardness (mg/L)	LPLF3	15.99	262	158 Yes	38	0.05
` • ·	LPLF3 LPLF1 (bg)		100	49 Yes		0.05
Magnesium (mg/L)	, .,	10.58	322	158 Yes	17 38	0.05
Sodium (mg/L)	LPLF4 (bg) UnderDrain	9.635 4.368	46	37 Yes	14	0.05
Potassium (mg/L)	LPLF3	3.185	210	158 Yes	38	0.05
Calcium (mg/L)			170	158 Yes	38	
Sulfate (mg/L)	LPLF4 (bg)	2.92	72	45 Yes		0.05
Potassium (mg/L)	LPLF5 (bg)	1.984			16	0.05
Magnesium (mg/L)	LPLF3	1.867	382	158 Yes 49 Yes	38	0.05
Iron (mg/L)	LPLF1 (bg)	1.726	78 70		17	0.05
Nitrate (mg/L)	LPLF1 (bg)	0.9106	76 70	49 Yes	17	0.05
Nitrate-Nitrite (mg/L)	LPLF1 (bg)	0.8838	76 470	49 Yes	17	0.05
Temperature (Deg C)	LPLF2	0.4184	179	158 Yes	38	0.05
Temperature (Deg C)	LPLF3	0.4011	199	158 Yes	38	0.05
Manganese (mg/L)	LPLF2	0.1938	187	158 Yes	38	0.05
pH (SIU)	LPLF4 (bg)	0.1629	207	158 Yes	38	0.05
Iron (mg/L)	LPLF2	0.118	258	158 Yes	38	0.05
Ammonia (mg/L)	LPLF2	0.1116	206	158 Yes	38	0.05
Nitrate-Nitrite (mg/L)	LPLF4 (bg)	0.05	340	158 Yes	38	0.05
Nitrate (mg/L)	LPLF4 (bg)	0.04932	333	158 Yes	38	0.05
Dis. Boron (mg/L)	LPLF4 (bg)	0.0395	431	158 Yes	38	0.05
Zinc (mg/L) Cadmium (mg/L)	LPLF1 (bg) LPLF5 (bg)	0.008115 0.0001438	40 46	34 Yes 45 Yes	13 16	0.05 0.05
Nitrite (mg/L)	LPLF3 (bg)	0.0001436	-202	-158 Yes	38	0.05
Dis. Arsenic (mg/L)	LPLF4 (bg)	-0.00003373	-202	-158 Yes	38	0.05
Cadmium (mg/L)	LPLF2	-0.00006919	-378	-156 Tes	38	0.05
Dis. Arsenic (mg/L)	LPLF2	-0.00008346	-251	-158 Yes	38	0.05
Dis. Arsenic (mg/L)	LPLF3	-0.0001409	-392	-158 Yes	38	0.05
Dis. Arsenic (mg/L)	LPLF1 (bg)	-0.0002761	-85	-49 Yes	17	0.05
Dis. Arsenic (mg/L)	LPLF5 (bg)	-0.0009233	-89	-45 Yes	16	0.05
Cadmium (mg/L)	UnderDrain	-0.001239	-57	-37 Yes	14	0.05
Dis. Barium (mg/L)	LPLF8	-0.004571	-245	-96 Yes	27	0.05
Iron (mg/L)	LPLF3	-0.006581	-166	-158 Yes	38	0.05
Dis. Barium (mg/L)	LPLF2	-0.006677	-200	-158 Yes	38	0.05
Dis. Barium (mg/L)	LPLF1 (bg)	-0.006871	-79	-49 Yes	17	0.05
Fluoride (mg/L)	LPLF2	-0.009432	-256	-158 Yes	38	0.05
Fluoride (mg/L)	LPLF3	-0.0154	-297	-158 Yes	38	0.05
Fluoride (mg/L)	LPLF4 (bg)	-0.0167	-203	-158 Yes	38	0.05
Dis. Barium (mg/L)	LPLF5 (bg)	-0.02484	-101	-45 Yes	16	0.05
Manganese (mg/L)	LPLF4 (bg)	-0.02464	-242	-45 Tes -158 Yes	38	0.05
Fluoride (mg/L)	LPLF4 (bg) LPLF1 (bg)	-0.03000	-242 -76	-136 Tes -49 Yes	17	0.05
Nitrate-Nitrite (mg/L)	LPLF1 (bg) LPLF8		-103	-49 Yes	27	0.05
, - ,		-0.04363		-96 Yes -158 Yes	38	
Ammonia (mg/L) Fluoride (mg/L)	LPLF4 (bg) LPLF8	-0.04807 -0.05328	-236 -173	-158 Yes -96 Yes	36 27	0.05 0.05
r idolide (ilig/L)	LF LI O	-0.00320	-173	-30 162	21	0.03


1


TABLE 4-1 Significant Trend Summary - December 2010


Constituent Name	Well	Slope	Mann-Kendall	Critical Value Trend	N	Alpha
Iron (mg/L)	LPLF4 (bg)	-0.06011	-417	-158 Yes	38	0.05
pH (SIU)	LPLF3	-0.07249	-159	-158 Yes	38	0.05
Nitrate (mg/L)	LPLF2	-0.09656	-320	-158 Yes	38	0.05
Nitrate-Nitrite (mg/L)	LPLF2	-0.1007	-330	-158 Yes	38	0.05
pH (SIU)	LPLF1 (bg)	-0.1243	-70	-49 Yes	17	0.05
Nitrate (mg/L)	UnderDrain	-0.1792	-43	-37 Yes	14	0.05
Nitrate-Nitrite (mg/L)	UnderDrain	-0.1792	-43	-37 Yes	14	0.05
Nitrate (mg/L)	LPLF3	-0.2129	-290	-158 Yes	38	0.05
TOC (mg/L)	LPLF2	-0.231	-177	-158 Yes	38	0.05
Nitrate-Nitrite (mg/L)	LPLF3	-0.2333	-299	-158 Yes	38	0.05
pH (SIU)	LPLF8	-0.2913	-211	-96 Yes	27	0.05
Zinc (mg/L)	UnderDrain	-0.3333	-48	-37 Yes	14	0.05
Potassium (mg/L)	LPLF2	-0.6278	-313	-158 Yes	38	0.05
Chloride (mg/L)	LPLF1 (bg)	-1.304	-92	-49 Yes	17	0.05
Calcium (mg/L)	LPLF4 (bg)	-1.412	-275	-158 Yes	38	0.05
Chloride (mg/L)	LPLF8	-1.712	-121	-96 Yes	27	0.05
Manganese (mg/L)	LPLF8	-1.77	-126	-96 Yes	27	0.05
TOC (mg/L)	LPLF8	-2.802	-192	-96 Yes	27	0.05
Dis. Hardness (mg/L)	LPLF4 (bg)	-3.206	-237	-158 Yes	38	0.05
Sulfate (mg/L)	LPLF3	-14.78	-164	-158 Yes	38	0.05
Calcium (mg/L)	LPLF2	-19.37	-222	-158 Yes	38	0.05
Calcium (mg/L)	LPLF8	-32.9	-123	-96 Yes	27	0.05
Bicarbonate (mg/L)	LPLF5 (bg)	-96.35	-51	-45 Yes	16	0.05
Dis. Hardness (mg/L)	LPLF8	-116.3	-134	-96 Yes	27	0.05
Iron (mg/L)	LPLF8	-170.5	-186	-96 Yes	27	0.05
Sulfate (mg/L)	LPLF8	-262.6	-102	-96 Yes	27	0.05
Specific Conductance (uS/cm)	LPLF8	-352.3	-112	-96 Yes	27	0.05

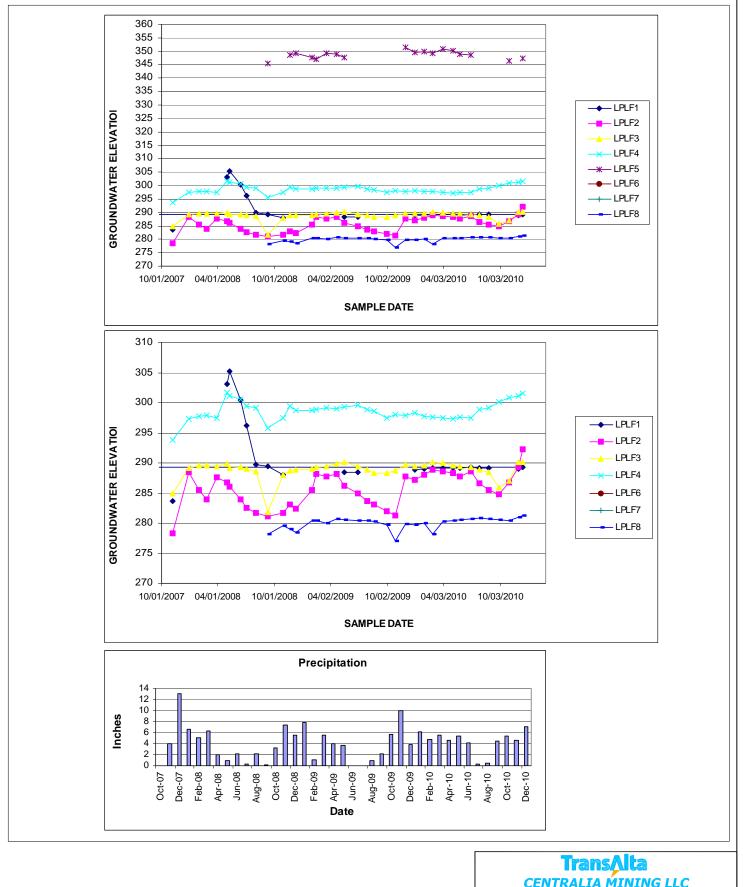
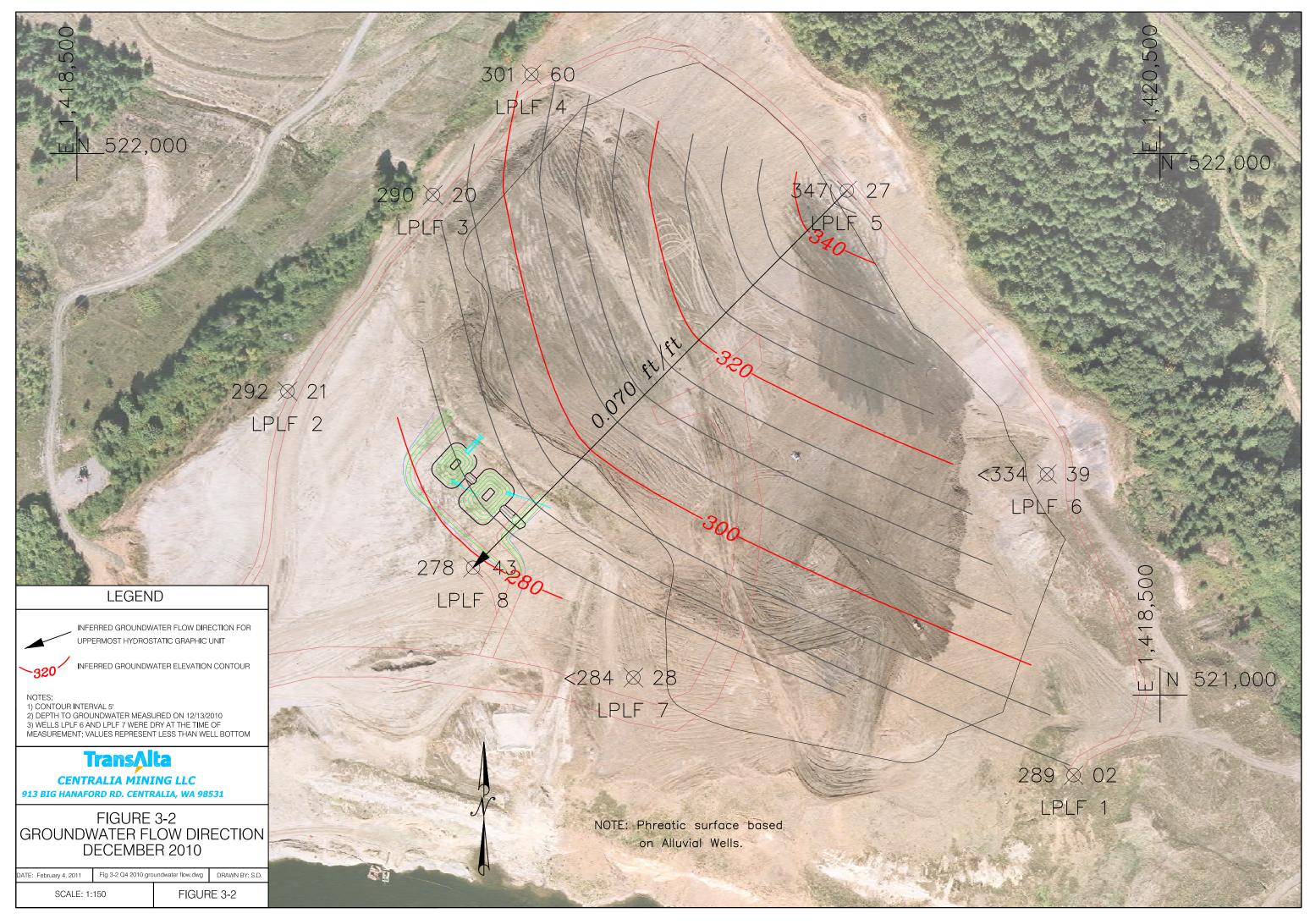
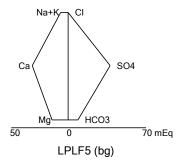
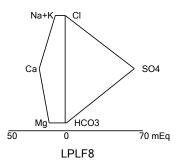
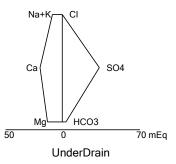

NOTE:

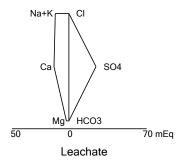
Table 4-1 are the significant cases from Mann-Kendall trend test in Appendix C. Positive slope value indicates "increasing trend"; negative slope value indicates "decreasing trend".

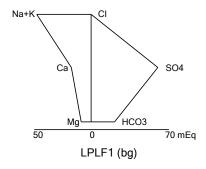


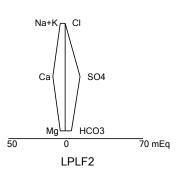


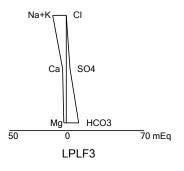

CENTRALIA MINING LLC 913 BIG HANAFORD RD CENTRALIA, WA 98531

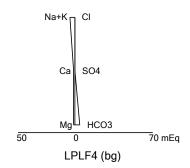

GROUNDWATER HYDROGRAPH & PRECIPITATION


Date: February 10,	11 fig3-1_10Feb	11.dwg	Drawn By: DNM	REVISION
SCALE: A	Shown	Figur	e 3-1	









December 2010 Sampling Results

Source: Stiff diagrams generated in Sanitas.

TransAlta

CENTRALIA MINING LLC
913 BIG HANAFORD RD. CENTRALIA, WA 98531

FIGURE 3-3 STIFF DIAGRAM

DATE: February 4, 2011

Appendix A

Field Data Sheets and Laboratory Analytical Data Packages

SITE I	DATA/FIEL	D DETERM	MINATION	S	HELL	WATER GOALIT	Y SAMPLING AND ANALY		
1.	Project: _	CP	LF.			9. Temperat	ture (°C): 2	1	3.2
2.	TCM Site	No: L	PLF.			10. pH (unit	s): 6.52	(/ 6	.56
		(GW.DW.S		su)		11. Cond. Fie	old (mhos/cm): 455	3	4580
4.	Data Typ	e: V	4					1	
5.	Date: L	2,13	10			12. DO (mg/l)):	1	
6.	Time (mil	12	20			13.			
		By (Initials		-		14.		0.00	100
		ce: GD	//		57360	15. Chlorine	(mg/l): free	total	-
		Comments:	-1	led n	early	dry a	8:26		
					L	0			
17.	Weather	Conditions:	Sun	breck-	breezy	18. Flow	Conditions: 100	ع	
_					/				
SITE	CONDITIO	NS / SAMF	LE HAND	LING				00	
19.	Sampling	Method:	Bai	ter		20. Sam	ple Source: UR	er	
	_	Removed E				(gal.)	/,		
22.	Static Wa	ater Level o	r Dis chary	Rate: 5	5.39 (cf	(ft.) 23. Stag	ge: (ft.)		
	Field Inst						pple Treatment:	PUF 10	100
FIELD	METHOD NUMBER	INSTRUMENT	CALIBRATION	ST/A	NDALED as measured	TYPE	TREATMENT	-	CONTAINER TYPE
Temp.	SM 2550	YSI MPS Model 558	4		2	2-White	None	250/120	115
pH	SM 4500-H+B	YSI MPS Model 558	X			(White	Filter, HNO3	120	1
Cond.	SM 2510 B	YSI MPS		1		White	Unfilter, HNO3	1	
Dis Ox.	SM 4500-O-G	Model 556 YSI MPS				White	Unfiltered, H2SO4	- (//	
Alkalinity	SM 2320 B	Model 556 HACH	1	-		White	Filtered, Raw		4
		Digital Titrator	N/A	-	X	White	Amber/HCL		
Calinit	CMASSO D				1				
Salinity	SM2520 B	YSI MPS Model 556				Fecal Coliforn	Sodium Thiosulfate		
Salinity Chlorine	SM2520 B SM 4500-CL G	YSI MPS Model 556	N/A			Fecal Coliforn			
Chlorine		YSI MPS Model 556 HACH DPD	N/A			Fecal Colifor			
Chlorine 26.	SM 4500-CL G	YSI MPS Model 556 HACH DPD	N/A			Fecal Colifor		WDOE	TATION NO. 1036
Chlorine 26.	SM 4500-CL G	YSI MPS Model 556 HACH DPD	N/A	Analysis to		Fecal Colifor	Sodium Thiosulfate	ACCREDIT	TATION NO. 1025 Duplicate
26. TCG	Remarks	YSI MPS Model 556 HACH DPD		Analysis to be performed R	osuits	Fecal Colifor	Sodium Thiosulfate		TATION NO. 1025 Duplicate Valves
Chlorine 26. TCG LAB A	Remarks NALYSIS ENCY (D, W,	YSI MPS Model 556 HACH DPD		be performed R	osuits SS (mg/l)	Fecal Colifor	Sodium Thiosulfate Date Time	ACCREDIT Analyzed	Duplicate
26. TCG LAB A FREQUE DATE R	Remarks ANALYSIS ENCY (D, W,	YSI MPS Model 556 HACH DPD		be performed R		Fecal Coliforn	Sodium Thiosulfate Date Time	ACCREDIT Analyzed	Duplicate
Chlorine 26. TCG LAB A FREQUI DATE R	Remarks ANALYSIS ENCY (D, W,	YSI MPS Model 556 HACH DPD		be performed R	SS (mg/l)	Fecal Coliforn	Sodium Thiosulfate Date Time	ACCREDIT Analyzed	Duplicate
26. TCG LAB A FREQUIDATE A: TIME RE	Remarks NALYSIS ENCY (D, W, ECEIVED: ECEIVED: VED BY:	YSI MPS Model 556 HACH DPD	./	be performed R	SS (mg/l)	Fecal Coliforn	Sodium Thiosulfate Date Time	ACCREDIT Analyzed	Duplicate
Chlorine 26. TCG LAB A FREQUI DATE R TIME RE RECEIN DATE R	Remarks NALYSIS ENCY (D, W, ECEIVED: ECEIVED: VED BY: EVIEWED:	YSI MPS Model 556 HACH DPD	,,	be performed R	SS (mg/l)	Fecal Coliforn	Sodium Thiosulfate Date Time	ACCREDIT Analyzed	Duplicate
Chlorine 26. TCG LAB A FREQUI DATE R TIME RE RECEIN DATE R	Remarks NALYSIS ENCY (D, W, ECEIVED: ECEIVED: VED BY: EVIEWED:	VSI MPS Model 556 HACH DPD	,,	be performed R	SS (mg/l)	Fecal Coliforn	Sodium Thiosulfate Date Time	ACCREDIT Analyzed	Duplicate

Trans-rica	EIELD WATER OLLAN ITS	CAMPUNO AND ANALY	710
SITE DATA/FIELD DETERMINATIONS	FIELD WATER QUALITY	SAMPLING AND ANALYS	515
1. Project: LPLF	9. Temperatu	re (°C): <u> </u>	
2. TCM Site No: LPLF2	10. pH (units	· 6.44	
3. Site Type (GW.DW.SM,SW): GCC	11. Cond. Field	(mhos/cm): <u>[212</u>	
4. Data Type: Fled	@25ºC: _		
5. Date: 12, 13, 10	12. DO (mg/l):		
6. Time (mil): 10:10	13.		
7. Collected By (Initials):	14.		
8. Confidence: 4000	15. Chlorine (r	ng/l): free to	, otal
16. General Comments:			
17. Weather Conditions:	1 - (threase	Conditions: Nav	٠
17. Weather Conditions.	7 18. Flow	Conditions.	
SITE CONDITIONS / SAMPLE HANDLING			
19/Sampling Method: Law Plan	av Norasalt. 220. Samp	le Source: (1x)0	Ol .
21. Quantity Removed Before Sampling:	20. Gamp	le Bource	
21. Quantity Removed Before Sampling:	(gal.)	1,0	
22. Static Water Level or Discharge Rate: _	(cfs) (ft.) 23. Stage		
24. Field Instruments:	25. Samp	le Treatment:	CF10
FIELD METHOD INSTRUMENT CALIBRATION	STANDARD		Towns to bours to be a second
TEST NUMBER actur Temp. 5M-2550 YSI MPS	as measured TYPE	TREATMENT	QUANTITY CONTAINER TYPE
PH SM 4500-H+B YSI MPS	White	Filter, HNO3	120
Model 556	/ White	Unfilter, HNO3	7
Cond. SM 2510 B YSI MPS Model 556	1 7		
Dis Ox. SM 4500-O-G YSI MPS		Unfiltered, H2SO4	
Model 556 Alkalinity SM 2320 B HACH	White	Filtered, Raw	
Salaniny Supson R YSI MPS	_ White	Amber/HCL	
Salinity SM2520 B YSI MPS Model 556	Fecal Coliform	Sodium Thiosulfate	
Chlorine SM 4500-CL G HACH OPD N/A			
26. Remarks:			
TCG			WDOE
LAB ANALYSIS			ACCREDITATION NO. 1025
FREQUENCY (D, W. a, C. M. P): be perform		Date Time Analyzed Analyzed	Analyzed Duplicate By Valves
DATE RECEIVED:/	TSS (mg/l)	5, 119	6.71 1209
TIME RECEIVED:	Turbidity (NTU)	10-119	6.46 1211
RECEIVED BY:		15, 11.9	6.44 1212

TA#59 REV 6/04

TIME REVIEWED: ____:

WHITE - FILE

					FIE	LD WATER QUAL	ITV SAMPLIN	IG AND ANALYS	IS	
SITE D	ATA/FIEL	D DETER	MINATION	IS		ED WATEH GOAL	ATT OANT CIT	TO AND ANALIO		
		- U					rature (°C):			
2.	TCM Site	No: L	BUE	3_	una 🥞	10. pH (u	nits): 6.	16		
3.	Site Type	(GW.DW.	SM.SW):	new)		11. Cond. I	Field (mhos/c	m): _1089		
4.	Data Type	e: 🔃	el			@25℃				
5.	Date:	1-113	10			12. DO (m	g/l):			
6.	Time (mil): 9:	15			13.				
7.	Collected	By (Initials	s): MS(\underline{l}		14.		L·		
8.	Confiden	ce: _40	oul			15. Chlorin	e (mg/l): free	to	tal	
		Comments:								
							/			19 IRE
17.	Weather	Conditions	: cla	ely.	World	sun late of	WLL ow Conditions	Nov	e	
				P						
		NS / SAME							9	
19.	Sampling	Method:	cow	flow	- para	isaltisa sa	ample Source	- we	X	
								,		
[3	oo mil	72min	16		1.49	efe (ft.) 23. S	1	MA I		
22.	Static vve	er Level o	oriDischarg	e Hate:	////	ere (n.) 23. Si	tage:	(ft.)		
24.	Field Inst	ruments:				25. Sa	ample Treatm	ent:	F10	141.33
FIELD	METHOD NUMBER		CALIBRATIO	actual	STANDARD as measured	TYPE	TREATM	MENT		CONTAINER TYPE
Temp.	SM 2550	YSI MPS				∠ White	None		20/120	Vist
pH	SM 4500-H+B	YSI MPS Model 556				White	Filter, H		120	
Cond.	SM 2510 B	YSI MPS Model 556				White	Unfilter,			1 415
Dis Ox.	SM 4500-O-G	YSI MPS				White	Filtered,	d, H2SO4		V
Alkalinity	SM 2320 B	Model 556 HACH	N/A	1		White	Amber/h		-	V
Salinity	SM2520 B	PSI MPS		-	1		orm Sodium			
Chlorine	SM 4500-CL G		N/A							
26	Remarks	DPO .								100
TCG	Hemans	-					1		WDOE	
	NALYSIS									ATION NO. 1025
FREQUE	ENCY (D. W.	Q, C, M, P):		Analysis to be performe		T. CPPCA	Date Analyzed	Time Analyzed	Analyzed By	Duplicate Valves
DATE RE	ECEIVED:	,		Q	TSS (mg/l)		-,5,	11.9	697	1086
	CEIVED:	0-77			Textidity (NTU)		10,	115	6.82	1099
RECEIV		.0)					15,	119	677	1092
	EVIEWED:	.67	_/	_						
	VIEWED: _						11			

TA#59 REV 6/04

REVEIWED BY:

WHITE - FILE

FIELD WATER QUALITY SAMPLING AND ANALYSIS

CITE	DATA	MIEI D	DETER	AMAIATIONIC
31 I E	UAIA	TIELU	DEIER	MINATIONS

SITE	ATA/FIEL	D DETER	MINATIONS	5						
1.	Project: _	LPI	UF_		20,50	9. Temperatu	re (°C):	16	V SVII.I	
2.	TCM Site	No:	PLFL	<u>{</u>		10. pH (units)	: 71	4		7.77
			SMEW):C			11. Cond. Field		396	536	
4.	Data Type	e: De				@25°C: _				
		2,13				12. DO (mg/l):]			35-63
): 9:				13.		- 5		
			s) MUK			14.				-305.5
		ce: <i>CC</i>	//			15. Chlorine (n	_\ _ ng/l): free	tot	al	
		Comments								
				141					The sale	
17	Weather	Conditions	do	ud -	A. br.	CER Flow C	Conditions:	Non	•	
- 17.	**************************************	Conditions		7	35. 17	<u> </u>				
SITE C	ONDITIO	NS/SAMI	PLE HANDI	LING						
19.	Sampling	Method:	Lo	w Plan	pass	cspltzie Sampl	le Source:	Well		
21.	Quantity	Removed	Before Sam	pling:	•	(gal.)		,		7.170
22	Static Wa	ater Level o	or D ischarge	Rate: 2	<u>O</u> (cf	(ft.) 23. Stage	M	(ft.)		- cherries
24.	Field Inst	ruments:	nin)2	-(nt: LPC	F10	4.00
FIELD	METHOD NUMBER	INSTRUMENT	CALIBRATION	ST/	ANDARD as measured	TYPE	TREATM			CONTAINER TYPE
Temp.	SM 2550	YSI MPS Model 556				2-White	None		20/120	1/st.
pH/	SM 4500-H+B	YSI MPS Model 556	40	70	690	White	Filter, HN		120	
Cond.	/SM 2510 B	YSI MPS Model 556	1447	1447	1447	White White	Unfilter, H		U	
Dis Ox.	SM 4500-O-G	YSI MPS Model 556				White	Filtered, F	Raw		
Alkalinity	SM 2320 B SM2520 B	HACH Digital Titrator YSI MPS	N/A			White	Amber/HO		-	
Chlorine	SM 4500-CL G	Model 556	N/A			Fecal Coliform	Sodium I	niosuitate		
		DPD	N/A							
	Remarks				= :					
TCG LAB A	NALYSIS								WDOE ACCREDIT	ATION NO. 1025
FREQUE	NCY (D, W, C	Q, C, M, P): _		Analysis to be performed Re	osults	A	Date Analyzed	Time Analyzed	Analyzed By	Duplicate Valves
DATE RE	CEIVED:			п	SS (mg/l)		5	11.3	7.86	374
				>	urbidity (NTU)		10	11.3	7.30	395
TIME RE	CEIVED:								7	
		,					15,	11.5	7,20	396
RECEIVI	ED BY:	3		0 -	1		15,_	11.5	7.20	396
RECEIVI DATE RE	EVIEWED:	35		<u> </u>	1		20,_	115	7.20	396 396
RECEIVI DATE RE	ED BY:	15 TES					15,	# 5 # 6	7.20	396 396

Trans∧lta

					FIFI	WATER QUALITY	SAMPLING AND ANALY	SIS	
SITE	DATA/FIEL	D DETERM	MINATION	s	FILLE	WATER GOALITY	SAMI EING AND ANALI	010	
1.	Project: _		2PL			9. Temperatur	re (°C): 13-8		magniture.
2.	TCM Site	No: _L	PLF	5		10. pH (units)	6.42		
3.	Site Type	(GW.DW.S	SM.SW):	SW		11. Cond. Field	(mhos/cm)2814		
4.	Data Type	E FE	d			@25°C:			
5.	Date: /	2,13	10			12. DO (mg/l):			
		: 12:				13.			
7	Collected	By (Initials	MUC			14.			
		ce: <u>9</u>				15. Chlorine (m	and/l): free	total	
					eset	- tribe	& Bow	total	
16.	General	Comments:		12	2001	10000			-
-			<u> </u>	laca la	0				
17.	Weather	Conditions:	Sun	WI Cales	call	18. Flow C	conditions:	ne	
SITE C	CONDITIO	NS / SAMP	LE HAND	LING			I Carlotte		
10	Complian	Mathada	/ax) Start	D. FECK	Ufiz 20. Sampl	- Saurea	111	
19.	Sampling	wernog: _	2000	rew	1-cer-co 17	20. Sampi	e Source:		
21/	Quantity	Removed E	efore Sam	npling:	,	(gal.)	1.0		
22	(+5 m	CIONN	16	- le	641	(4) 22 Stores	MA		
22)	Static wa	ter Level of	Discharge	e Hate:	(GE	23. Stage:	10.	511	
24.	Field Inst	ruments:				25. Sampl	e Treatment:	-10	2010
FIELD	METHOD NUMBER		CALIBRATION	actual	es messured	TYPE	TREATMENT	QUANTITY	CONTAINER TYPE
Temp.	SM 2550	YSI MPS Model 556				White	None	250/120	Plst
pH	SM 4500-H+B	YSI MPS Model 556) White	Filter, HNO3	ite	
Cond.	SM 2510 8	YSLMPS			1	White	Unfilter, HNO3	1/-	
Dis Ox.	SM 4500-O-G	Model 558 YSI MPS				White	Unfiltered, H2SO4	V	
	011	Model 556	1			White	Filtered, Raw		
Alkatinity	SM 2320 B	HACH Digital Titrator	N/A			White	Amber/HCL		
Salinity	SM2520 B	YSI MPS	1000		F T	Fecal Coliform	Sodium Thiosulfate		A THE STATE
Chlorine	SM 4500-CL G	Model 556 HACH DPD	N/A						
26.	Remarks:								
TCG								WDOE	
	NALYSIS								ATION NO. 1025
FREQUE	ENCY (D, W, C	Q, C, M, P):		Analysis to be performed Re	suits	A	Date Time Analyzed	Analyzed By	Duplicate Valves
					3S (mg/l)	,	5, 133	6.6	12006
	CEIVED:				ribidity (NTU)		4 138	6.4	62824
	ED BY:				.c.ory (ITTO)		5 138	- (- 42	2816
	EVIEWED:	,	,					0	COUD .
DATE HE	- v := vv = : 1.	,							
			'	u _			':		

TA#59 REV 6/04

REVEIWED BY:

WHITE - FILE

TA#59 REV 6/04

FIELD WATER QUALITY SAMPLING AND ANALYSIS

SITE	DATA/FIE	LD DETER	MINATION	S							
1.	Project:	UP	LF				9. Tempe	rature (°C): _			
2.	TCM Site	e No:	PLE	5	-		10. pH (ui	nits):	7		
3.	Site Type	e (GW.DW.	SM.SW):	sw			11. Cond. F	Field (mhos/cm	0:		
		e: le	1/				@25°C:)		
		12,13					12. DO (mg	g/l):	_/		
		ii): 8:6					13.				
		d By (Initials		2			14.	7			
		nce:	V				15. Chlorin	e (mg/l); free _		otal	
		Comments						13.7			
10.	GONOIGI	1/2	esol	12) Te	-0	Amp	suction	us fo	uho u	her to
47	con		cli	male	-6	1 1	ee2018. Flo	-	d ben		-
17.	weather	Conditions	: <u> </u>	- I	7	(/ 0/) -	18. FIG	ow Conditions:			
SITE	CONDITIO	ONS / SAMI	PLE HAND	LIŅG	1						
19.	Samplin	g Method:	Vic	Sual	-50	xerd	20. Sa	imple Source:	W	ell	
21.	Quantity	Removed I	Before Sam	npling:	2	9	(gal.)		,		
22.	Static W	ater Level c	or D ischaro	Pate:	-10.0	6/10	(ft.) 23. St	age:	(A (ft.)	Ø	
		truments:		,			9	ample Treatmer		MIA.	
FIELD	METHOD		CALIBRATION		STANDARD		1			1	
TEST Temp.	NUMBER SM 2550	YSI MPS		actus	4 4	rnegsured	TYPE	None	NT	QUANTITY	CONTAINER TYP
pH	SM 4500-H+8	Model 556 YSI MPS		-			White	Filter, HN	03		
Cond.	SM 2510 B	Model 558 YSI MPS					White	Unfilter, H	Market 1		
		naccel 556					White	Unfiltered		1000	Ercronital Estate
Dis. Ox.	SM 4500-O-G	VSI MPS Model 556			18		White	Filtered, F	_		
Alkalinity	SM 2320 B	HACH	N/A				White	Amber/HC			
Salinity	SM2520 B	Digital Titrator YSI MPS	+		-		Fecal Colife				
		Model 556					recar come	Simil Sodium II	niosunate		
Chlorine	SM 4500-CL (DPD DPD	N/A		0/						,
26.	Remarks	: Mec	Gural	Les	the	18.79	i - Sur	spect to	verter la	ul 3 he	low and
TCG	MAI VEIS	tabe								WDOE	ATION NO. 102
LADA	MALISIS	1 0000		Analysis to				Date	Time	ACCREDIT	Duplicate
FREQUE	ENCY (D, W,	Q, C, M, P):		111772	ed Results			Analyzed	Analyzed	Ву	Valves
DATE R	ECEIVED: _		/		TSS (mg/l				:		
TIME RE	ECEIVED: _				Turbidity (NTU)			<u> </u>		-
RECEIV	/ED BY:				-		<u></u>	_/_/_	_:_		
DATE RI	EVIEWED: _		_/		_			_/_/_			
TIME RE	VIEWED: _	1-	Mar.					_/_/_	:		
REVEIW	ED BY:	Mis. C.						_/_/_		-	

WHITE - FILE

TA#59 REV 6/04

FIELD WATER QUALITY SAMPLING AND ANALYSIS

SITE D	ATA/FIEL	D DETERM	MINATIONS			- 11.50				
1.	Project: _	LP	UP_	14			9. Temperatur	re (°C):		
2.	TCM Site	No:	PLF	<u></u>	444		10. pH (units)			r:
			SM.SW): C	1			11. Cond. Field	(mhos/cm):		
		e: Eld					@25°C:			
		2113	, 9				12. DO (mg/l):	1272247		
		8.3					13.			
			: MSIL	,			14.			*
		ce: Go					15. Chlorine (n	ng/l): free	total	17
		Comments:	5	61	11 26	10	Total Inc.			
			SALE		0-	,			100 - 10 - 1 - T	72 TV
17	Weather	Conditions:	da	all.	-4	hos	ING SOME	Conditions: Nor	~	
17.	Weauter	Conditions.				V. J.	<u> </u>	TOTALIONS.		-
SITE	CONDITIO	NS/SAMP	LE HANDL	ING			W.			
19.	Sampling	Method: _	UBL	4 5	ourd	er	20. Sampl	le Source: We	el	
21.	Quantity	Removed B	Before Samp	oling:	(7	(gal.)			
22	Static Wa	ter Level or	r Discharge	Rate:	22	70 W	(ft)) 23 Stage	= N/H	(1)	
	Field Inst		21000000				0	le Treatment:	1.1	
FIELD	METHOD		CALIBRATION		STANDAR	D	1			
TEST Temp.	NUMBER SM 2550	YSI MPS		actual		as measured	TYPE	TREATMENT	QUANTITY	CONTAINER TYPE
pH	SM 4500-H+B	Medel 556 YSI MPS					White	None Filter, HNO3	Version 12	
		Model 556					White	Unfilter, HNO3		
Cond.	SM 2510 B	YSI MPS Model 556	- 1					The second secon	2 7 7	
Dis. Ox.	SM 4500-O-G	YSI MPS					White	Unfiltered, H2SO4	-	PARTICIPATION SAND
Alkalinity	SM 2320 B	Model 556 HACH	-				White	Filtered, Raw	The part of	
		Digital Titrator YSI MPS	N/A		man sale LL		White	Amber/HCL	_	
Salinity	SM2520 B	Model 556					Fecal Coliform	Sodium Thiosulfate		
Chlorine	SM 4500-CL G		N/A							
26.	Remarks									
TCG		-							WDOE	4
LAB A	NALYSIS						100			TATION NO. 1025
FREQUE	NCY (D. W. (D, C, M, P):		Analysis to be performed			A	Date Time Analyzed Analyze	Analyzed ed By	Duplicate Valves
	ECEIVED:		,		TSS (mg					W1
				-						
	CEIVED:			0	Turbialty	/ (NTU)				
RECEIV				0						
				0	-			_/:=		
	VIEWED:				-			_/_ :=		

WHITE - FILE

	ATA/EIEI	D DETERM	PACITAMIN		FIELD	WATER QUALITY	SAMPLING AND ANALY		
1.	Project: _	No: L		7 W		9. Temperatur 10. pH (units):	:)	2.15_(p.47)	1945
4.	Data Type		1			@25°C:			
): 10:				13.	/		
		By (Initials		,		14.			
8.	Confiden	ce: _G	Dec			15. Chlorine (t	ng/l): free	total	
16.	General (Comments:				00			
17.	Weather	Conditions:	clau	dy	wom we		Conditions: Non		
19.	Sampling	Method:	4	Bual-	sand	20. Sampl	e Source: We		
19. 21. 22.	Sampling Quantity Static Wa	Removed E	Before Samp	ling:	and G 176 (cts	(gal.)	: MA(n.)	1/A	
19. 21. 22. 24.	Sampling Quantity Static War Field Inst	Removed Enter Level or	Before Samp	Rate:	ANDARD (cfs	(gal.) (ft.) 23. Stage 25. Sample	e Treatment:	// A	TOUTAINED TWO
19. 21. 22. 24. FIELD TEST Temp.	Sampling Quantity Static Wa Field Inst	Removed Exter Level or ruments: INSTRUMENT YSI MPS Model 556 YSI MPS	Before Samp	ling:	9 , 76 (cts	(gal.)	: MA(n.)	A QUANTITY	CONTAINER TYP
19. 21. 22. 24.	Sampling Quantity Static Wa Field Inst METHOD NUMBER SM 2550	Removed Exter Level or ruments: INSTRUMENT YSI MPS Model 556	Before Samp	Rate:	ANDARD (cfs	(gal.) (ft.) 23. Stage 25. Sample TYPE White White	TREATMENT None Filter, HNO3 Unfilter, HNO3	A QUANTITY	CONTAINER TYP
19. 21. 22. 24. FIELD TEST Temp.	Sampling Quantity Static Wa Field Inst METHOD NUMBER SM 2550 SM 4506-H+B	Removed E tter Level o ruments: INSTRUMENT YSI MPS Model 556 YSI MPS Model 556 YSI MPS	Before Samp	Rate:	ANDARD (cfs	(gal.) 23. Stage 25. Sampl TYPE White White White	TREATMENT None Filter, HNO3 Unfilter, HNO3 Unfiltered, H2SO4	QUANTITY	CONTAINER TYP
19. 21. 22. 24. FIELD TEST Temp. pH	Sampling Quantity Static Wa Field Inst METHOD NUMBER SM 2550 SM 4500-H+B SM 2510 B	Removed Enter Level or ruments: INSTRUMENT YSI MPS Model 556 YSI MPS Model 556 Model 556	Before Samp or Discharge	Rate:	ANDARD (cfs	(gal.) (ft.) 23. Stage 25. Sampl TYPE White White White White	TREATMENT None Filter, HNO3 Unfiltered, H2SO4 Filtered, Raw	QUANTITY	CONTAINER TYP
19. 21. 22. 24. FIELD TEST Temp. pH Cond. Dis. Ox.	Sampling Quantity Static Wa Field Inst METHOD NUMBER SM 2550 SM 4500-0-6	Removed Exter Level or ruments: INSTRUMENT YSI MPS Model 556 YSI MPS Model 556 YSI MPS Model 556 YSI MPS Model 556 YSI MPS Model 556 YSI MPS Model 556	Before Samp	Rate:	ANDARD (cfs	(gal.) 23. Stage 25. Sample TYPE White White White White White White White	TREATMENT None Filter, HNO3 Unfilter, HNO3 Unfiltered, H2SO4 Filtered, Raw Amber/HCL	QUANTITY	CONTAINER TYP
19. 21. 22. 24. FIELD TEST Temp. PH Cond. Dis Ox. Alkalinity	Sampling Quantity Static Wa Field Inst METHOD NUMBER SM 2550 SM 4500-H+B SM 2510 B SM 4500-O-G SM 2320 B	Removed Exter Level of ruments: INSTRUMENT YSI MPS Model 556 YSI MPS Model 556 YSI MPS Model 556 HACH Digital Taristor YSI MPS Model 556 HACH	Before Samp or Discharge	Rate:	ANDARD (cfs	(gal.) (ft.) 23. Stage 25. Sampl TYPE White White White White	TREATMENT None Filter, HNO3 Unfilter, HNO3 Unfiltered, H2SO4 Filtered, Raw Amber/HCL	QUANTITY	CONTAINER TYP
19. 21. 22. 24. FIELD TEST Temp. pH Cond. Dis Ox. Alkabinity Chlorine	Sampling Quantity Static Wa Field Inst METHOD NUMBER SM 2550 SM 4500-H+B SM 2510 B SM 2520 B SM2520 B	Removed Exter Level of ruments: INSTRUMENT YSI MPS Model 556 YSI MPS Model 556 YSI MPS Model 556 HACH Digital Tirrstox YSI MPS Model 556 HACH Digital 560 HACH DPD	Before Samp or Discharge CALIBRATION N/A	Rate:	ANDARD (cfs	(gal.) 23. Stage 25. Sample TYPE White White White White White White White	TREATMENT None Filter, HNO3 Unfilter, HNO3 Unfiltered, H2SO4 Filtered, Raw Amber/HCL	QUANTITY	CONTAINER TYP
19. 21. 22. 24. FIELD TEST Temp. PH Cond. Dis. Ox. Alkalinity Chlorine 26.	Sampling Quantity Static Wa Field Inst METHOD NUMBER SM 2550 SM 4500-H+B SM 2510 B SM 4500-O-G SM 2320 B SM 2520 B	Removed Exter Level of ruments: INSTRUMENT YSI MPS Model 556 YSI MPS Model 556 YSI MPS Model 556 HACH Digital Tirrstox YSI MPS Model 556 HACH Digital 560 HACH DPD	Before Samp or Discharge CALIBRATION N/A	Rate:	ANDARD (cfs	(gal.) 23. Stage 25. Sample TYPE White White White White White White White	TREATMENT None Filter, HNO3 Unfilter, HNO3 Unfiltered, H2SO4 Filtered, Raw Amber/HCL	WDOE	TATION NO. 1025

LAB ANALYSIS			38			ACCREDITA	TION NO. 1025
FREQUENCY (D. W, Q, C, M, P):	Analysis to be performed	Results		Date Analyzed	Time Analyzed	Analyzed By	Duplicate Valves
DATE RECEIVED://		TSS (mg/l)			;		
TIME RECEIVED:		Turbidity (NTU)	100	-1-1-			
RECEIVED BY:			-				
DATE REVIEWED:///				_'			_
TIME REVIEWED:::			 -	_''			
REVEIWED BY:		-			:		

TA#59 REV 6/04

WHITE - FILE

FIELD WATER QUALITY SAMPLING AND ANALYSIS

SITE D	ATA/FIEL	D DETERM	MINATION	s		The state of the s			
1.	Project: _	LP	LF_			9. Temperatu	re (°C): <u>/3</u> . <u>/</u>		100
2.	TCM Site	No: US	LFS	<u></u>		10. pH (units)	516		
3.	Site Type	(GW.DW.S	SM,SW): 6	iw		11. Cond. Field	(mhos/cm): 335	51	
4.	Data Type	e: Tee	l						
5.	Date: la	2,13	10			12. DO (mg/l):			
6.	Time (mil	12.0	00			13.			
		By (Initials		(,		14.			
		ce: 90	1/				ng/l): free	total	
		/				13. Officiale (II	ng/i). Iree	(Old)	
10.	General	Comments:							
				1-	6. 11	-E			
17.	Weather	Conditions:	Zin	4/la	a- Uric	CV 1 278. CELOW C	Conditions:	re	
SITE C	CONDITIO	NS / SAMP	I F HAND	LING					
				A-1-	h ne con		le Source: Web	80	-
19.	Sampling 125 m	Method:	1/6	+ gove	· parasisti	20. Samp	le Source:		
		Removed E				(gal.)			
22.	Static Wa	iter Level o	r Discharg	e Rate:	-15.69 (at	e)(ft.) 23. Stage	: NA (H.)	
	Field Inst	_				Y	le Treatment:	LF 10	
FIELD	METHOD	INSTRUMENT	CALIBRATION		STANDARD	1			
TEST	NUMBER SM 2550	YSIMPS		actual	as measured	TYPE 2White	TREATMENT	250/120	OLST.
н	SM 4500-H+B	Model 558	-			White	None Filter, HNO3	120	111
		Model 556				White	Unfilter, HNO3	1	(/
ond.	SM 2510 B	YSI MPS Model 556				White	Unfiltered, H2SO4		1/
is Ox.	SM 4500-O-G	YSI MPS Model 556				White	Filtered, Raw		V
lkalindy	SM 2320 B	HACH Digital Titrator	N/A			White	Amber/HCL		
alinity	SM2520 B	YSI MPS				Fecal Coliform	Sodium Thiosulfate		
hlorine	SM 4500-CL G	Model 556 HACH DPD	N/A						
26.	Remarks					Y L			
rcg								WDOE	
	NALYSIS								10N NO. 1025
				Analysis to			Date Time	Analyzed	Duplicate Valves
LAB AI	NCY (D. W. C	D. C. M. P):		be performe	d Results	A	Analyzed Analyzed	Ву	vaives
REQUE	NCY (D; W; C		/	be performe	TSS (mg/l)		Analyzed Analyzed		3 333
FREQUE	ECEIVED:		/						
PREQUE	CEIVED:	/	/	0	TSS (mg/l)				3 333
PREQUE DATE RE TIME RECEIVE	CEIVED:	:	/	0	TSS (mg/l)				3 333
LAB AI FREQUE DATE RE TIME RECEIVE DATE RE	CEIVED:	:	/	0 0 0	TSS (mg/l)				3 333

TA#59 REV 6/04

WHITE - FILE

Trans∆lta

TA#59 REV 6/04

FIELD WATER QUALITY SAMPLING AND ANALYSIS

SITE	ATA/FIEL	D DETERM	INATIONS							
1.	Project: _	LPL	F_,		THE	9. Temperatur	e (°C): 10	(3		
2.	TCM Site	No:	cach	ate.		10. pH (units):	22	6		
		(GW.DW.S	_	_ /		11. Cond. Field	(mhos/cm):	180	1	
	Data Type					@25°C:				
		2,13,	10			12. DO (mg/l):				
		10:				13.		T. A.		
7	Collected	By (Initials)	MER			14. CDE	, 10	50 //	0.00	
			//				7_	22 /0	701	
		ce: _94	2001			15. Chlorine (m	ig/i): iree	tot	aı	
16.	General (Comments:	= ===							/
-		-	. 1	1				/		11
17.	Weather	Conditions:	Sun	Teule !	t, bree	18. Flow C	conditions: _	most	€ 6mod	m
		NS / SAMP		1				11	/	
19.	Sampling	Method: _	9 12	<u> </u>	-	20. Sampl	e Source:	dio		
21.	Quantity I	Removed B	efore Samp	oling:	0	(gal.)	N			
22.	Static Wa	ter Level or	Discharge	Rate: 35.	25 (0)	In meta	0.3	(ft.)		
	Field Inst				.668 (b	.()	e Treatment:	CPC	F10	
FIELD	METHOD	INSTRUMENT	CALIBRATION		NDARD				CUANTITY .	CONTAINED TAR
TEST Temp.	NUMBER SM 2550	YSI MPS		actual	as measured	ZWhite	TREATMEN None	VI.	QUANTITY 280/120	CONTAINER TYPE
DH -	SM 4500-H+B	Model 556 YSI MPS			-	White	Filter, HNO	3	120	Pro
Cond.	SM 2510 B	Model 550 YSI MPS		S-192-1		White	Unfilter, HN	03		
		Model 556				White	Unfiltered, I	H2SO4		
Dis Ox.	SM 4500-O-G	YSI MPS Model 556				White	Filtered, Ra	w	V	
Alkalınıty	SM 2320 B	HACH	N/A			White	Amber/HCL			
Salinity	SM2520 B	PSI MPS				Fecal Coliform	Sodium Thi			
Chlorine	SM 4500-CL G	Model 556 HACH			-					
		OPD	N/A							
26.	Remarks:									
TCG	NALYSIS	7.44							WDOE ACCREDIT	ATION NO. 1025
	MALI OIO	244		Analysis to			Date	Time	Analyzed	Duplicate
FREQUE	NCY (D. W. C	Q, C, M, P).		be performed Res	suits	A	nalyzed	Analyzed	Ву	Valves
DATE RE	ECEIVED:			□ /TS	S (mg/l)		/	:		1
TIME R	CEIVED:	8.4 (a LPI	-BV TUI	rbidity (NTU)				-	
RECEIN	.7/			П		,	,			
8	. 17									
0.7-		- 11/	201	n.h/						
DATE	EVIEWED:	3.94	DB1	oak_			/			
8	EVIEWED:	3.94	<u> </u>	0 an _			_'_ _'_			_

WHITE - FILE

FIELD WATER QUALITY SAMPLING AND ANALYSIS

CITE	DATA	EIEI D	DETERMINATIONS	
2116	UAIA		DETERMINATIONS	

		LPL				9. Temperatur	/ /	40/		
		No:				10. pH (units)			, ,	
3.	Site Type	(GW.DW.S	SM.SW):	SW		11. Cond. Field	i (mhos/cm)	218	7	
4.	Data Typ	e: Pla	-							
		2,13				12. DO (mg/l):				
6.	Time (mil): 10:	30			13.	-			
		By (Initials		<u>+</u>		14.				
8.	Confiden	ce: <i>GO</i>	wil			15. Chlorine (n	ng/l): free	to	tal	
		Comments:								
17	Weather	Conditions:	Sun	lo Feel	- Ctobr	eezet8. Flow C	Conditions:	low to	ned 1	5 mooth
	***************************************	OUT GILLOTTO.								
SITE	CONDITIO	NS / SAMP	LE HAND	LING /						
19.	Sampling	Method: _	9	Res		20. Sampl	le Source: _	drai	'N	
		Removed B			0	(gal.)	1			
22.	Static Wa	ater Level o	r Discharg	e Rate:	N/A (ct	s) (ft.) 23. Stage	MA	(ft.)		
24.	Field Inst	truments:						t: LPC	FIO	
FIELD	METHOD NUMBER	INSTRUMENT	CALIBRATION	actual	STANDARD as measured	TYPE	TREATME	NT	QUANTITY	CONTAINER TYPE
Temp.	SM 2550	YSI MPS Model 556				ZWhite	None		22/120	p/st.
рН	SM 4500-FFFB	YSI MPS Model 5565	/			White	Filter, HNC		120	1
Cond.	SM 2510 B	YSI MPS Model 556				White	Unfilter, Hi		1/	
Dis Ox.	SM 4500-O-G	YSI MPS				-	Unfiltered, Filtered, R			
Alkalinity	SM 2320 B	Model 556 HACH	N/A	1		White	Amber/HC			
Salinity	SM2520 B	Pigital Titrator YSI MPS			1	Fecal Coliform			4	
Chlorine	SM 4500-CL G	Model 556 HACH DPD	N/A							
26.	Remarks)					
TCG									WDOE	
	NALYSIS						2		ACCREDIT	TATION NO. 1025
FREQUI	ENCY (D. W.	Q, C, M, P)		Analysis to be performed	Results	A	Date Analyzed	Time Analyzed	Analyzed By	Duplicate Valves
DATE R	ECEIVED: _	/	·		TSS (mg/l)			:		
TIME RE	ECEIVED:	:_	180		Turbidity (NTU)			-		The state of
RECEIV	VED BY:								-	
DATE R	EVIEWED: _	/	./						-	1
TIME RE	EVIEWED: _	:								
REVEIN										
	VED BY:					/				

WHITE - FILE

Your P.O. #: 4700030233 LINE50 Your Project #: LPLF 10 LF1210

Site: TCM

Your C.O.C. #: 11886801, 118868-01-01

Attention: Scott Keating
TRANSALTA CENTRALIA MINING LLC
TRANSALT-CEN
913 BIG HANAFORD ROAD
Centralia, WA
USA 98531

Report Date: 2010/12/22

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B0C1615 Received: 2010/12/15, 10:55

Sample Matrix: Water # Samples Received: 8

		Date	Date	
Analyses	Quantity	Extracted	Analyzed Laboratory Method	Analytical Method
Alkalinity - Water	8	2010/12/15	2010/12/16 BBY6SOP-00026	Based on SM2320B
Chloride by Automated Colourimetry	8	N/A	2010/12/16 BBY6SOP-00011	Based on EPA 325.2
Fluoride - Mining Clients	8	N/A	2010/12/16 BBY6SOP-00038	Based SM - 4500 F C
Hardness Total (calculated as CaCO3)	2	N/A	2010/12/21	
Hardness Total (calculated as CaCO3)	6	N/A	2010/12/22	
Hardness (calculated as CaCO3)	8	N/A	2010/12/20	
Mercury (Total) by CVAF	2	2010/12/22	2010/12/22 65-A-002-10	EPA 245.7
Ion Balance	8	N/A	2010/12/20 Calc	
Na, K, Ca, Mg, S by CRC ICPMS (diss.)	8	N/A	2010/12/20 BBY7SOP-00002	Based on EPA 200.8
Elements by CRC ICPMS (dissolved)	8	N/A	2010/12/17 BBY7SOP-00002	Based on EPA 200.8
Na, K, Ca, Mg, S by CRC ICPMS (total)	2	2010/12/15	2010/12/21 BBY7SOP-00002	Based on EPA 200.8
Na, K, Ca, Mg, S by CRC ICPMS (total)	6	2010/12/15	2010/12/22 BBY7SOP-00002	Based on EPA 200.8
Elements by CRC ICPMS (total)	8	2010/12/18	2010/12/21 BBY7SOP-00002	Based on EPA 200.8
Ammonia-N	7	N/A	2010/12/16 BBY6SOP-00044	Based on EPA 350.1
Ammonia-N	1	N/A	2010/12/17 BBY6SOP-00044	Based on EPA 350.1
Nitrate + Nitrite (N)	7	N/A	2010/12/16 BBY6SOP-00010	Based on USEPA 353.2
Nitrate + Nitrite (N)	1	N/A	2010/12/17 BBY6SOP-00010	Based on USEPA 353.2
Nitrite (N) by CFA	8	N/A	2010/12/16 BBY6SOP-00010	EPA 353.2
Nitrogen - Nitrate (as N)	7	N/A	2010/12/17 BBY6SOP-00010	Based on EPA 353.2
Nitrogen - Nitrate (as N)	1	N/A	2010/12/20 BBY6SOP-00010	Based on EPA 353.2
Filter and HNO3 Preserve for Metals	8	N/A	2010/12/15 BRN WI-00006 R1.0	Based on EPA 200.2
Sulphite by IC ()	1	N/A	2010/12/16 CAL SOP-00071	SM 4110-B
Sulphite by IC ()	7	N/A	2010/12/17 CAL SOP-00071	SM 4110-B
Sulphate by Automated Colourimetry	4	N/A	2010/12/16 BBY6SOP-00017	Based on EPA 375.4
Sulphate by Automated Colourimetry	3	N/A	2010/12/17 BBY6SOP-00017	Based on EPA 375.4
Sulphate by Automated Colourimetry	1	N/A	2010/12/22 BBY6SOP-00017	Based on EPA 375.4
Total Dissolved Solids (Filt. Residue)	8	N/A	2010/12/16 BBY6SOP-00033	SM 2540C
Carbon (Total Organic)	8	N/A	2010/12/16 BBY6SOP-00003	Based on SM-5310C
Field pH	8	N/A	2010/12/16	
Field Temperature	8	N/A	2010/12/15	
Field Conductivity	8	N/A	2010/12/16	

^{*} Results relate only to the items tested.

(1) This test was performed by Maxxam Calgary Environmental

TRANSALTA CENTRALIA MINING LLC Client Project #: LPLF 10 LF1210 Site Reference: TCM

Your P.O. #: 4700030233 LINE50

-2-

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

NAMITA SAHNI, BBY Customer Service Email: NSahni@maxxam.ca Phone# (604) 639-2614

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

TRANSALTA CENTRALIA MINING LLC Client Project #: LPLF 10 LF1210

Site Reference: TCM

Your P.O. #: 4700030233 LINE50

RESULTS OF CHEMICAL ANALYSES OF WATER

Maxxam ID		Z05009			Z05010		Z05011			Z05012		
Sampling Date		2010/12/13			2010/12/13		2010/12/13			2010/12/13		
		12:20			10:10		09:45			09:15		
	Units	LPLF1	RDL	QC Batch	LPLF2	RDL	LPLF3	RDL	QC Batch	LPLF4	RDL	QC Batch
Misc. Inorganics												
Fluoride (F)	mg/L	0.12	0.01	4509400	0.05	0.01	0.09	0.01	4509400	0.24	0.01	4509400
Field-Vancouver												_
Field Conductivity	uS/cm	4600	0.1	ONSITE	1200	0.1	1100	0.1	ONSITE	400	0.1	ONSITE
Field pH	pH Units	6.5	0.1	ONSITE	6.4	0.1	6.8	0.1	ONSITE	7.1	0.1	ONSITE
Field Temperature	°C	12.9	N/A	ONSITE	11.9	N/A	11.9	N/A	ONSITE	11.6	N/A	ONSITE
ANIONS												
Nitrite (N)	mg/L	0.055	0.005	4512347	< 0.005	0.005	< 0.005	0.005	4512347	< 0.005	0.005	4512347
Calculated Parameters							-			-		
Filter and HNO3 Preservation	N/A	FIELD	N/A	ONSITE	FIELD	N/A	FIELD	N/A	ONSITE	FIELD	N/A	ONSITE
Total Hardness (CaCO3)	mg/L	1300	0.5	4505547	722	0.5	202	0.5	4505547	59.5	0.5	4505547
Ion Balance	N/A	0.90	0.01	4507665	0.92	0.01	1.0	0.01	4507665	0.96	0.01	4507665
Nitrate (N)	mg/L	3.46	0.04	4505971	<0.02	0.02	<0.02	0.02	4505971	0.20	0.02	4505971
Misc. Inorganics			•				-	-	-	-	-	-
Dissolved Hardness (CaCO3)	mg/L	1300	0.5	4505239	714	0.5	201	0.5	4505239	56.3	0.5	4505239
Total Organic Carbon (C)	mg/L	4.5	0.5	4512104	<0.5	0.5	2.0	0.5	4512104	1.6	0.5	4512104
Bicarbonate (HCO3)	mg/L	1300	0.5	4508843	400	0.5	720	0.5	4508843	300	0.5	4508843
Carbonate (CO3)	mg/L	<0.5	0.5	4508843	<0.5	0.5	<0.5	0.5	4508843	<0.5	0.5	4508843
Anions												
Dissolved Sulphate (SO4)	mg/L	2900	50	4516557	660	5	180	0.5	4516557	26	0.5	4512601
Dissolved Sulphite (SO3)	mg/L	<30(1)	30	4513355	<5(1)	5	<3(1)	3	4513355	<0.5(2)	0.5	4513355
Dissolved Chloride (CI)	mg/L	7.4	0.5	4512599	4.0	0.5	6.3	0.5	4512599	3.9	0.5	4512599
Nutrients											-	
Ammonia (N)	mg/L	0.42	0.005	4509619	0.77	0.01	0.80	0.01	4509619	0.10	0.005	4509619
Nitrate plus Nitrite (N)	mg/L	3.51	0.04	4514743	<0.02	0.02	<0.02	0.02	4512300	0.20	0.02	4512300
Physical Properties												
Total Dissolved Solids	mg/L	4200	10	4510064	1200	10	880	10	4510064	310	10	4510064

N/A = Not Applicable

RDL = Reportable Detection Limit

Sample was past hold time when received.

Detection limits raised due to matrix interference.

(2) - Sample was precreened by ion chromatography. Sulfite was not detected.

Sample was past hold time when received.

^{(1) -} Sample was precreened by ion chromatography. Sulfite was not detected.

TRANSALTA CENTRALIA MINING LLC Client Project #: LPLF 10 LF1210

Site Reference: TCM

Your P.O. #: 4700030233 LINE50

RESULTS OF CHEMICAL ANALYSES OF WATER

Maxxam ID		Z05013			Z05014			Z05015		Z05016		
Sampling Date		2010/12/13			2010/12/13			2010/12/13		2010/12/13		
		12:45			12:00			10:40		10:30		
	Units	LPLF5	RDL	QC Batch	LPLF8	RDL	QC Batch	LEACHATE	RDL	UD	RDL	QC Batch
Misc. Inorganics												
Fluoride (F)	mg/L	0.21	0.01	4509400	0.12	0.05	4509400	0.84	0.01	0.15	0.01	4509400
Field-Vancouver												
Field Conductivity	uS/cm	2800	0.1	ONSITE	3400	0.1	ONSITE	1800	0.1	2200	0.1	ONSITE
Field pH	pH Units	6.4	0.1	ONSITE	5.2	0.1	ONSITE	9.3	0.1	6.1	0.1	ONSITE
Field Temperature	°C	13.8	N/A	ONSITE	13.1	N/A	ONSITE	12.3	N/A	10.0	N/A	ONSITE
ANIONS												
Nitrite (N)	mg/L	< 0.005	0.005	4512347	0.033	0.005	4512347	0.120	0.005	< 0.005	0.005	4512347
Calculated Parameters												
Filter and HNO3 Preservation	N/A	FIELD	N/A	ONSITE	FIELD	N/A	ONSITE	FIELD	N/A	FIELD	N/A	ONSITE
Total Hardness (CaCO3)	mg/L	2250	0.5	4505547	1950	0.5	4505547	770	0.5	1670	0.5	4505547
Ion Balance	N/A	1.1	0.01	4507665	0.98	0.01	4507665	1.0	0.01	1.1	0.01	4507665
Nitrate (N)	mg/L	0.04	0.02	4505971	< 0.02	0.02	4505971	1.29	0.02	<0.02	0.02	4505971
Misc. Inorganics												
Dissolved Hardness (CaCO3)	mg/L	2230	0.5	4505239	1810	0.5	4505239	707	0.5	1570	0.5	4505239
Total Organic Carbon (C)	mg/L	1.1	0.5	4512104	3.3	0.5	4512104	13.6	0.5	3.8	0.5	4512104
Bicarbonate (HCO3)	mg/L	540	0.5	4508843	120	0.5	4508843	45	0.5	230	0.5	4508843
Carbonate (CO3)	mg/L	<0.5	0.5	4508843	<0.5	0.5	4508843	10	0.5	<0.5	0.5	4508843
Anions									_			
Dissolved Sulphate (SO4)	mg/L	1800	5	4512601	3000	50	4527046	1200	5	1600	5	4512601
Dissolved Sulphite (SO3)	mg/L	<30(1)	30	4513355	<30(1)	30	4513355	<10(1)	10	<30(1)	30	4513355
Dissolved Chloride (CI)	mg/L	7.4	0.5	4512599	11	0.5	4512599	18	0.5	9.7	0.5	4512599
Nutrients												
Ammonia (N)	mg/L	0.27	0.005	4509619	5.3	0.1	4513468	0.68(2)	0.05	1.1	0.03	4509619
Nitrate plus Nitrite (N)	mg/L	0.04	0.02	4512300	0.05	0.02	4512300	1.41	0.02	<0.02	0.02	4512300
Physical Properties												
Total Dissolved Solids	mg/L	3400	10	4510064	3900	10	4510064	1900	10	2800	10	4510064

N/A = Not Applicable

RDL = Reportable Detection Limit

Sample was past hold time when received.

Detection limits raised due to matrix interference.

(2) - RDL raised due to sample matrix interference.

^{(1) -} Sample was precreened by ion chromatography. Sulfite was not detected.

TRANSALTA CENTRALIA MINING LLC Client Project #: LPLF 10 LF1210

Site Reference: TCM Your P.O. #: 4700030233 LINE50

Maxxam ID		Z05009		Z05010		Z05011		Z05012			Z05013		
Sampling Date		2010/12/13		2010/12/13		2010/12/13		2010/12/13			2010/12/13		
		12:20		10:10		09:45		09:15			12:45		
	Units	LPLF1	RDL	LPLF2	QC Batch	LPLF3	QC Batch	LPLF4	RDL	QC Batch	LPLF5	RDL	QC Batch
Elements													
Total Mercury (Hg)	ug/L	<0.08	0.08	< 0.02	4516786	0.03	4516790	< 0.02	0.02	4526222	0.06	0.04	4516790
Dissolved Metals by ICPMS													
Dissolved Arsenic (As)	ug/L	<0.4	0.4	0.2	4511238	0.2	4511238	0.3	0.1	4511238	0.3	0.2	4511238
Dissolved Barium (Ba)	ug/L	20	4	43	4511238	117	4511238	76	1	4511238	28	2	4511238
Dissolved Boron (B)	ug/L	822	200	157	4511238	264	4511238	298	50	4511238	194	100	4511238
Dissolved Cadmium (Cd)	ug/L	0.38	0.04	0.04	4511238	0.06	4511238	0.02	0.01	4511238	0.50	0.02	4511238
Dissolved Chromium (Cr)	ug/L	<4	4	<1	4511238	<1	4511238	<1	1	4511238	<2	2	4511238
Dissolved Iron (Fe)	ug/L	4370	20	3170	4511238	197	4511238	37	5	4511238	280	10	4511238
Dissolved Lead (Pb)	ug/L	<0.8	0.8	<0.2	4511238	<0.2	4511238	<0.2	0.2	4511238	<0.4	0.4	4511238
Dissolved Manganese (Mn)	ug/L	451	4	1010	4511238	864	4511238	52	1	4511238	5090	2	4511238
Dissolved Mercury (Hg)	ug/L	<0.08	0.08	< 0.02	4511238	< 0.02	4511238	< 0.02	0.02	4511238	<0.04	0.04	4511238
Dissolved Selenium (Se)	ug/L	<0.4	0.4	<0.1	4511238	<0.1	4511238	<0.1	0.1	4511238	<0.2	0.2	4511238
Dissolved Silver (Ag)	ug/L	<0.08	0.08	< 0.02	4511238	< 0.02	4511238	< 0.02	0.02	4511238	<0.04	0.04	4511238
Dissolved Zinc (Zn)	ug/L	37	20	6	4511238	<5	4511238	<5	5	4511238	98	10	4511238
Dissolved Calcium (Ca)	mg/L	352	0.2	206	4505240	54.8	4505240	13.2	0.05	4505240	623	0.1	4505240
Dissolved Magnesium (Mg)	mg/L	102	0.2	48.3	4505240	15.5	4505240	5.68	0.05	4505240	163	0.1	4505240
Dissolved Potassium (K)	mg/L	17.8	0.2	5.12	4505240	4.79	4505240	1.75	0.05	4505240	8.1	0.1	4505240
Dissolved Sodium (Na)	mg/L	1090	0.2	96.0	4505240	261	4505240	96.9	0.05	4505240	124	0.1	4505240

TRANSALTA CENTRALIA MINING LLC Client Project #: LPLF 10 LF1210

Site Reference: TCM

Your P.O. #: 4700030233 LINE50

Maxxam ID		Z05009		Z05010		Z05011		Z05012			Z05013		
Sampling Date		2010/12/13		2010/12/13		2010/12/13		2010/12/13			2010/12/13		
		12:20		10:10		09:45		09:15			12:45		
	Units	LPLF1	RDL	LPLF2	QC Batch	LPLF3	QC Batch	LPLF4	RDL	QC Batch	LPLF5	RDL	QC Batch
Total Metals by ICPMS													
Total Arsenic (As)	ug/L	2.8	0.4	0.2	4516786	<0.1	4516790	<0.1	0.1	4516790	<0.2	0.2	4516790
Total Barium (Ba)	ug/L	90	4	42	4516786	116	4516790	76	1	4516790	29	2	4516790
Total Boron (B)	ug/L	727	200	149	4516786	266	4516790	306	50	4516790	214	100	4516790
Total Cadmium (Cd)	ug/L	0.48	0.04	0.03	4516786	0.07(1)	4516790	0.05	0.01	4516790	0.61	0.02	4516790
Total Chromium (Cr)	ug/L	42	4	<1	4516786	<1	4516790	<1	1	4516790	<2	2	4516790
Total Iron (Fe)	ug/L	14100	20	3220	4516786	206	4516790	63	5	4516790	556	10	4516790
Total Lead (Pb)	ug/L	5.6	0.8	<0.2	4516786	<0.2	4516790	<0.2	0.2	4516790	<0.4	0.4	4516790
Total Manganese (Mn)	ug/L	498	4	1050	4516786	891	4516790	75	1	4516790	5230	2	4516790
Total Selenium (Se)	ug/L	<0.4	0.4	<0.1	4516786	<0.1	4516790	<0.1	0.1	4516790	<0.2	0.2	4516790
Total Silver (Ag)	ug/L	<0.08	0.08	< 0.02	4516786	< 0.02	4516790	< 0.02	0.02	4516790	<0.04	0.04	4516790
Total Zinc (Zn)	ug/L	52	20	<5	4516786	<5	4516790	<5	5	4516790	97	10	4516790
Total Calcium (Ca)	mg/L	351	0.2	207	4505548	54.7	4505548	13.8	0.05	4505548	627	0.1	4505548
Total Magnesium (Mg)	mg/L	102	0.2	50.1	4505548	15.8	4505548	6.07	0.05	4505548	167	0.1	4505548
Total Magnesium (Mg)	ug/L	102000	200	50100	4516786	15800	4516790	6070	50	4516790	167000	100	4516790
Total Potassium (K)	mg/L	18.3	0.2	5.13	4505548	4.73	4505548	1.79	0.05	4505548	8.2	0.1	4505548
Total Potassium (K)	ug/L	18300	200	5130	4516786	4730	4516790	1790	50	4516790	8190	100	4516790
Total Sodium (Na)	mg/L	1080	0.2	100	4505548	277	4505548	109	0.05	4505548	137	0.1	4505548
Total Sulphur (S)	mg/L	915	10	213	4505548	67	4505548	11	3	4505548	732	6	4505548

^{(1) -} Duplicate RPD above control limit - (10% of analytes failure allowed)

TRANSALTA CENTRALIA MINING LLC Client Project #: LPLF 10 LF1210

Site Reference: TCM

Your P.O. #: 4700030233 LINE50

Maxxam ID		Z05014			Z05015		Z05016		
Sampling Date		2010/12/13			2010/12/13		2010/12/13		
· -		12:00			10:40		10:30		
	Units	LPLF8	RDL	QC Batch	LEACHATE	QC Batch	UD	RDL	QC Batch
Elements									
Total Mercury (Hg)	ug/L	<0.08	0.08	4516790	<0.02	4526222	0.04	0.02	4516790
Dissolved Metals by ICPMS									
Dissolved Arsenic (As)	ug/L	9.2	0.2	4511238	2.1	4511238	0.6	0.1	4511238
Dissolved Barium (Ba)	ug/L	15	2	4511238	132	4511238	25	1	4511238
Dissolved Boron (B)	ug/L	928	100	4511238	2540	4511238	742	50	4511238
Dissolved Cadmium (Cd)	ug/L	0.22	0.02	4511238	0.15	4511238	0.53	0.01	4511238
Dissolved Chromium (Cr)	ug/L	<2	2	4511238	29	4511238	<1	1	4511238
Dissolved Iron (Fe)	ug/L	487000	10	4511238	141(1)	4511238	12800	5	4511238
Dissolved Lead (Pb)	ug/L	<0.4	0.4	4511238	<0.2	4511238	<0.2	0.2	4511238
Dissolved Manganese (Mn)	ug/L	10100	2	4511238	220(1)	4511238	9640	1	4511238
Dissolved Mercury (Hg)	ug/L	<0.04	0.04	4511238	<0.02	4511238	<0.02	0.02	4511238
Dissolved Selenium (Se)	ug/L	<0.2	0.2	4511238	17.8	4511238	0.2	0.1	4511238
Dissolved Silver (Ag)	ug/L	<0.04	0.04	4511238	<0.02	4511238	<0.02	0.02	4511238
Dissolved Zinc (Zn)	ug/L	570	10	4511238	<5	4511238	204	5	4511238
Dissolved Calcium (Ca)	mg/L	448	0.1	4505240	249	4505240	383	0.05	4505240
Dissolved Magnesium (Mg)	mg/L	169	0.1	4505240	20.4	4505240	149	0.05	4505240
Dissolved Potassium (K)	mg/L	12.7	0.1	4505240	45.4	4505240	13.7	0.05	4505240
Dissolved Sodium (Na)	mg/L	181	0.1	4505240	246	4505240	170	0.05	4505240

TRANSALTA CENTRALIA MINING LLC Client Project #: LPLF 10 LF1210

Site Reference: TCM

Your P.O. #: 4700030233 LINE50

Maxxam ID		Z05014			Z05015		Z05016		
Sampling Date		2010/12/13			2010/12/13		2010/12/13		
. 0		12:00			10:40		10:30		
	Units	LPLF8	RDL	QC Batch	LEACHATE	QC Batch	UD	RDL	QC Batch
Total Metals by ICPMS									
Total Arsenic (As)	ug/L	10.3	0.4	4516790	2.2	4516790	0.5	0.1	4516790
Total Barium (Ba)	ug/L	18	4	4516790	143	4516790	24	1	4516790
Total Boron (B)	ug/L	923	200	4516790	2900	4516790	769	50	4516790
Total Cadmium (Cd)	ug/L	0.28	0.04	4516790	0.09	4516790	0.46	0.01	4516790
Total Chromium (Cr)	ug/L	<4	4	4516790	36	4516790	<1	1	4516790
Total Iron (Fe)	ug/L	545000	20	4516790	40	4516790	14100	5	4516790
Total Lead (Pb)	ug/L	<0.8	0.8	4516790	<0.2	4516790	<0.2	0.2	4516790
Total Manganese (Mn)	ug/L	11000	4	4516790	20	4516790	10700	1	4516790
Total Selenium (Se)	ug/L	<0.4	0.4	4516790	18.4	4516790	0.1	0.1	4516790
Total Silver (Ag)	ug/L	<0.08	0.08	4516790	<0.02	4516790	<0.02	0.02	4516790
Total Zinc (Zn)	ug/L	625	20	4516790	<5	4516790	203	5	4516790
Total Calcium (Ca)	mg/L	483	0.2	4505548	274	4505548	401	0.05	4505548
Total Magnesium (Mg)	mg/L	180	0.2	4505548	20.6	4505548	162	0.05	4505548
Total Magnesium (Mg)	ug/L	180000	200	4516790	20600	4516790	162000	50	4516790
Total Potassium (K)	mg/L	13.5	0.2	4505548	51.3	4505548	15.0	0.05	4505548
Total Potassium (K)	ug/L	13500	200	4516790	51300	4516790	15000	50	4516790
Total Sodium (Na)	mg/L	205	0.2	4505548	294	4505548	198	0.05	4505548
Total Sulphur (S)	mg/L	1100	10	4505548	473	4505548	669	3	4505548

TRANSALTA CENTRALIA MINING LLC Client Project #: LPLF 10 LF1210 Site Reference: TCM

Your P.O. #: 4700030233 LINE50

Package 1	3 3°€

Each temperature is the average of up to three cooler temperatures taken at receipt

RESULTS OF CHEMICAL ANALYSES OF WATER Comments

Sample Z05014-01 Fluoride - Mining Clients: Detection limits raised due to insufficient sample volume.

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER) Comments

Sample Z05009-04 Elements by CRC ICPMS (dissolved): RDL raised due to sample matrix interference.

Sample Z05013-04 Elements by CRC ICPMS (dissolved): RDL raised due to sample matrix interference.

Sample Z05014-04 Elements by CRC ICPMS (dissolved): RDL raised due to sample matrix interference.

Sample Z05009-03 Elements by CRC ICPMS (total): RDL raised due to sample matrix interference.

Sample Z05013-03 Elements by CRC ICPMS (total): RDL raised due to sample matrix interference.

Sample Z05014-03 Elements by CRC ICPMS (total): RDL raised due to sample matrix interference.

TRANSALTA CENTRALIA MINING LLC

Client Project #: LPLF 10 LF1210 Site Reference: TCM Your P.O. #: 4700030233 LINE50

QUALITY ASSURANCE REPORT

			Matrix	Spike	Spiked	Blank	Method Blai	nk	RF	PD
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits
4508843	Bicarbonate (HCO3)	2010/12/16			_		<0.5	mg/L	1.0	20
4508843	Carbonate (CO3)	2010/12/16					<0.5	mg/L	2.3	20
4509400	Fluoride (F)	2010/12/16	101	80 - 120	97	80 - 120	<0.01	mg/L	0.5	20
4509619	Ammonia (N)	2010/12/16	NC	80 - 120	96	80 - 120	<0.005	mg/L	2.4	20
4510064	Total Dissolved Solids	2010/12/16	108	80 - 120	98	80 - 120	<10	mg/L	NC	20
4511238	Dissolved Arsenic (As)	2010/12/17	105	80 - 120	100	80 - 120	<0.1	ug/L	NC	20
4511238	Dissolved Cadmium (Cd)	2010/12/17	108	80 - 120	100	80 - 120	<0.01	ug/L	NC	20
4511238	Dissolved Chromium (Cr)	2010/12/17	100	80 - 120	98	80 - 120	<1	ug/L	NC	20
4511238	Dissolved Lead (Pb)	2010/12/17	103	80 - 120	102	80 - 120	<0.2	ug/L	NC	20
4511238	Dissolved Selenium (Se)	2010/12/17	108	80 - 120	102	80 - 120	<0.1	ug/L	NC	20
4511238	Dissolved Zinc (Zn)	2010/12/17	105	80 - 120	97	80 - 120	<5	ug/L	NC	20
4511238	Dissolved Barium (Ba)	2010/12/17					<1	ug/L	1.0	20
4511238	Dissolved Boron (B)	2010/12/17					<50	ug/L		
4511238	Dissolved Iron (Fe)	2010/12/17					<5	ug/L	0.4	20
4511238	Dissolved Manganese (Mn)	2010/12/17					<1	ug/L	1.5	20
4511238	Dissolved Mercury (Hg)	2010/12/17					<0.02	ug/L	NC	20
4511238	Dissolved Silver (Ag)	2010/12/17					<0.02	ug/L	NC	20
4512104	Total Organic Carbon (C)	2010/12/16	NC	80 - 120	103	80 - 120	<0.5	mg/L	14.7	20
4512300	Nitrate plus Nitrite (N)	2010/12/16	99	80 - 120	104	80 - 120	<0.02	mg/L	0.9(1)	25
4512347	Nitrite (N)	2010/12/16	106	80 - 120	101	80 - 120	<0.005	mg/L	NC	20
4512599	Dissolved Chloride (CI)	2010/12/16	NC	80 - 120	109	80 - 120	<0.5	mg/L	NC	20
4512601	Dissolved Sulphate (SO4)	2010/12/16	NC	80 - 120	100	80 - 120	0.8, RDL=0.5	mg/L	NC	20
4513468	Ammonia (N)	2010/12/17	NC	80 - 120	87	80 - 120	<0.005	mg/L	0.9	20
4514743	Nitrate plus Nitrite (N)	2010/12/17	94	80 - 120	100	80 - 120	<0.02	mg/L	NC	25
4516557	Dissolved Sulphate (SO4)	2010/12/17	NC	80 - 120	93	80 - 120	<0.5	mg/L	3.7	20
4516786	Total Arsenic (As)	2010/12/21	102	80 - 120	100	80 - 120	<0.1	ug/L	NC	20
4516786	Total Cadmium (Cd)	2010/12/21	105	80 - 120	100	80 - 120	<0.01	ug/L	NC	20
4516786	Total Chromium (Cr)	2010/12/21	103	80 - 120	99	80 - 120	<1	ug/L	NC	20
4516786	Total Lead (Pb)	2010/12/21	107	80 - 120	104	80 - 120	<0.2	ug/L	NC	20
4516786	Total Selenium (Se)	2010/12/21	103	80 - 120	102	80 - 120	<0.1	ug/L	NC	20
4516786	Total Zinc (Zn)	2010/12/21	112	80 - 120	105	80 - 120	<5	ug/L	NC	20
4516786	Total Barium (Ba)	2010/12/21					<1	ug/L	3.0	20
4516786	Total Boron (B)	2010/12/21					<50	ug/L	NC	20
4516786	Total Iron (Fe)	2010/12/21					<5	ug/L	3.6	20
4516786	Total Manganese (Mn)	2010/12/21					<1	ug/L	2.0	20
4516786	Total Mercury (Hg)	2010/12/21					<0.02	ug/L	NC	20
4516786	Total Silver (Ag)	2010/12/21					<0.02	ug/L	NC	20
4516786	Total Magnesium (Mg)	2010/12/21					<50	ug/L		
4516786	Total Potassium (K)	2010/12/21					<50	ug/L		

TRANSALTA CENTRALIA MINING LLC Client Project #: LPLF 10 LF1210

Site Reference: TCM

Your P.O. #: 4700030233 LINE50

QUALITY ASSURANCE REPORT

		_	Matrix Spike		Spiked	Blank	Method Blar	ık	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits
4516790	Total Arsenic (As)	2010/12/21	100	80 - 120	95	80 - 120	<0.1	ug/L	NC	20
4516790	Total Cadmium (Cd)	2010/12/21	98	80 - 120	100	80 - 120	<0.01	ug/L	NC	20
4516790	Total Chromium (Cr)	2010/12/21	105	80 - 120	105	80 - 120	<1	ug/L	NC	20
4516790	Total Lead (Pb)	2010/12/21	102	80 - 120	101	80 - 120	<0.2	ug/L	NC	20
4516790	Total Selenium (Se)	2010/12/21	100	80 - 120	102	80 - 120	<0.1	ug/L	NC	20
4516790	Total Zinc (Zn)	2010/12/21	99	80 - 120	111	80 - 120	<5	ug/L	NC	20
4516790	Total Barium (Ba)	2010/12/21					<1	ug/L	0.04	20
4516790	Total Boron (B)	2010/12/21					<50	ug/L	0.3	20
4516790	Total Iron (Fe)	2010/12/21					<5	ug/L	0.03	20
4516790	Total Manganese (Mn)	2010/12/21					<1	ug/L	3.8	20
4516790	Total Mercury (Hg)	2010/12/21					0.02, RDL=0.02	ug/L	NC	20
4516790	Total Silver (Ag)	2010/12/21					<0.02	ug/L	NC	20
4516790	Total Magnesium (Mg)	2010/12/21					<50	ug/L	3.9	20
4516790	Total Potassium (K)	2010/12/21					<50	ug/L	3.4	20
4526222	Total Mercury (Hg)	2010/12/22	98	80 - 120	102	80 - 120	<0.02	ug/L	NC	20
4527046	Dissolved Sulphate (SO4)	2010/12/22	107	80 - 120	96	80 - 120	<0.5	mg/L	NC	20

N/A = Not Applicable

RDL = Reportable Detection Limit

RPD = Relative Percent Difference

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix to which a known amount of the analyte has been added. Used to evaluate analyte recovery.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was not sufficiently significant to permit a reliable recovery calculation.

NC (RPD): The RPD was not calculated. The level of analyte detected in the parent sample and its duplicate was not sufficiently significant to permit a reliable calculation.

(1) - Sample analysed past recommended hold time

Max	Maxxam Analytics International (4606 Canada Way, riumauy, dr			504 774 7716 C-1000 VIII 0	1	CHAIN OF CUSTODY F	ECORD		1 1	
	INVOICE INFORMATION:	000000000000000000000000000000000000000	REPORT INFORMATION (1 1000	PROJECT INFORMATION:		Laboratorillo	Page of	
Company Name.	#1791 TRANSALTA CENTRALIA MINING	G LLC Company Name			V.00 9000 0 0 0 0	B00295		Laboratory Use		
Contact Name:	Scott Keating	Contact Name:			-	4700030233 LINE50			80TTLE ORDER #:	
Address.	913 BIG HANAFORD ROAD	Address:			Project #:	LPLF 10	000	80.C1615 IIIIIIIII		
	Centralia WA 98531				Project Name:	E1210	СНА	IN OF CUSTODY #:	PROJECT MANAGER:	
Phone:	(360)330-8153 Fex (360)330-			Fax	Site #:	1cm	I THE REPORT OF THE PERSON OF	#118868-01-01	NAMITA SAHNI	
REGULATORY C	Scott_Keating@transalta.com	Email:	WE 02 1 4 62 100	T	Sampled By:	Mekad S Kactin	C.	¥118868-01-01	NAME OF SPICE	
REGULATURY	RITERIA.	SPECIAL INST	RUCTIONS		ANALYSIS REQUESTED (Plea	se be specific:	/ TI	URNAROUND TIME (TAT) F	REQUIRED:	
'	"	*	414		•		PLEASE P	ROVIDE ADVANCE NOTICE FO	R RUSH PROJECTS	
			14)6	Z			Regular (Standard)			
			nking Water	2				sh TAT is not specified): Working days for most tests.	X	
			5 8	AGE A			Please note: Standar	d TAT for certain tests such as B	OD and Dioxins/Furans are > 5	
				PACKAGE				Project Manager for details. FAT (if applies to entire submis	sion)	
	Note: For regulated drinking water samples - please use the D		Form 2	Field Filtered ? (Y / N)) A	Date Required:	Time Ro	quired	
SAM	PLES MUST BE KEPT COOL (< 10°C) FROM TIME OF SA	MPLING UNTIL DELIVERY TO	MAXXAM	als Fi			Rush Confirmation No			
Sample Barr	code Label Sample (Location) Identification	Date Sampled Tim	e Sampleo Matrix C	Metals Field F			# of Bottles	(call la	170000 1000	
,	12.51			V /				Comments		
-	LPLPI	12.1310 1.	2:20 GW N	11 2			5	200		
2	LPLFZ	10	0:10							
3	LPLE3		45					10 10		
		1 7	42	 						
4	LPLF4	9	:15							
5	LPLFS	12	:45						-	
-		100	73			 	++			
6	LPLF8	//2	w √							
	3 Leahute	1 1/10	5,40 SW				T		•	
		- V		1107-		 	+ + + -			
F.	u_0	1 10	30 1/V	W W			1/4			
				W			W			
9		1								
				 						
10	I									
C# LI	QUISA DAY (Signatura Print) Date (YY/MM/DD) Time:	DECEMBE	DV: /Signature C						
Mila	LIMEN 15 17	13 13:30	Feder Co	BY: (Signature/Print)	Date: (YY/MM/DD)	Time: # Jars Used and	MAG 100 TO 11 11 11 11 11 11 11 11 11 11 11 11 11	Laboratory Use Only	Custody Sinal Indaed on	
IT IS THE RESPONS	HIBILITY OF THE RELINQUISHED TO ENGINE THE ADDRESS		V 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	AYA) AJOKT	0112 [16	10:55	i ne Sersiw	Fernoestare (FC) or Resolution	Cooler? No Yes No	
	IBILITY OF THE RELINQUISHER TO ENSURE THE ACCUS	THE GHAIN OF CUS	OUT RECORD AN INCOMPLE	ETE CHAIN OF CUSTODY VAN	RESULT IN ANALYTICAL TAT DE	LAYS		200-100-100-100	White Vaxoam ive ow them	

Appendix B Descriptive Statistics:

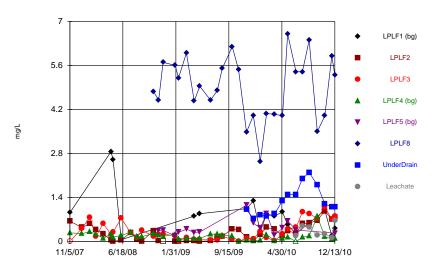
- Descriptive Statistics
- Time-Series Plots

Constituent Name	Well	N	Mean	Standard Deviation	Standard Error	Median	Lower Quartile,	Upper Quartile,	Minimum	Maximum	% Non-Detects
Ammonia (mg/L)	LPLF1 (bg)	6	1.359	1.114	0.4549	0.905	0.437	2.735	0.064	2.86	0
Ammonia (mg/L)	LPLF2	23	0.1739	0.202	0.04213	0.05	0.015	0.349	0.0025	0.65	4.348
Ammonia (mg/L)	LPLF3	23	0.2355	0.2155	0.04494	0.168	0.061	0.299	0.0025	0.77	4.348
Ammonia (mg/L)	LPLF4 (bg)	23	0.1977	0.06814	0.01421	0.197	0.148	0.25	0.08	0.315	0
Ammonia (mg/L)	LPLF5 (bg)	7	0.3123	0.06691	0.02529	0.308	0.292	0.359	0.188	0.396	0
Ammonia (mg/L)	LPLF8	12	5.181	0.6083	0.1756	5.07	4.63	5.65	4.47	6.2	2 0
Bicarbonate (mg/L)	LPLF1 (bg)	6	1178	456.5	186.4	1350			270		
Bicarbonate (mg/L)	LPLF2	23	339.1	50.89	10.61	340	300	390	230	440	0
Bicarbonate (mg/L)	LPLF3	23	653	43	8.967	650	620	690	560	710	0
Bicarbonate (mg/L)	LPLF4 (bg)	23	277.8	31.33	6.532	280	250	300	230	340	0
Bicarbonate (mg/L)	LPLF5 (bg)	7	664.3	46.5	17.57	660	620	720	610	720	0
Bicarbonate (mg/L)	LPLF8	12	119.9	72.06	20.8	115	74	180	2	230	0
Cadmium (mg/L)	LPLF1 (bg)	6	0.0003	0.0002181	0.00008903	0.0003	0.00008	0.00052	0.00004	0.00066	0
Cadmium (mg/L)	LPLF2	23	0.0001652	0.00008877	0.00001851	0.00016	0.00011	0.00021	0.00001	0.00045	0
Cadmium (mg/L)	LPLF3	23	0.00006587	0.00003881	0.000008092	0.00006	0.00004	0.00008	0.000005	0.00019	4.348
Cadmium (mg/L)	LPLF4 (bg)	23	0.00005196	0.00003506	0.0000731	0.00004	0.00003	0.00007	0.000005	0.00017	4.348
Cadmium (mg/L)	LPLF5 (bg)	7	0.0003243	0.0001714	0.00006477	0.00026	0.00022	0.00034	0.00021	0.0007	0
Cadmium (mg/L)	LPLF8	12	0.0007258	0.0004558	0.0001316	0.000845	0.000385	0.001095	0.000005	0.00128	16.67
Calcium (mg/L)	LPLF1 (bg)	6	306.5	114.4	46.7	355	191.5	373	79	376	0
Calcium (mg/L)	LPLF2	23	257.6	44.92	9.367	252	218	281	191	345	0
Calcium (mg/L)	LPLF3	23	46.74	6.398	1.334	45	42	50	39	63	0
Calcium (mg/L)	LPLF4 (bg)	23	17.52	2.02	0.4211	17	16	18	15	22	2 0
Calcium (mg/L)	LPLF5 (bg)	7	140.9	8.454	3.195	141	137	147	126	151	0
Calcium (mg/L)	LPLF8	12	516.1	40.49	11.69	527.5	483.5	548	447	573	0
Carbonate (mg/L)	LPLF1 (bg)	6	0.25	0	0	0.25	0.25	0.25	0.25	0.25	100
Carbonate (mg/L)	LPLF2	23	0.25	0	0	0.25	0.25	0.25	0.25	0.25	100
Carbonate (mg/L)	LPLF3	23	2.822	5.846	1.219	0.25	0.25	0.25	0.25	21	78.26
Carbonate (mg/L)	LPLF4 (bg)	23	0.5217	1.303	0.2717	0.25	0.25	0.25	0.25	6.5	95.65
Carbonate (mg/L)	LPLF5 (bg)	7	0.25	0	0	0.25	0.25	0.25	0.25	0.25	100
Carbonate (mg/L)	LPLF8	12	0.25	0	0	0.25	0.25	0.25	0.25	0.25	100
Chloride (mg/L)	LPLF1 (bg)	6	13.58	7.437	3.036	9.55	8.8	22.4	8.7	27	0
Chloride (mg/L)	LPLF2	23	3.804	0.5423	0.1131	3.7	3.6	3.9	3.1	6	0
Chloride (mg/L)	LPLF3	23	5.596	1.016	0.2119	5.1	4.9	6.2	4.6		
Chloride (mg/L)	LPLF4 (bg)	23	3.161	0.3602	0.07511	3.2	2.9	3.3	2.3	3.8	0
Chloride (mg/L)	LPLF5 (bg)	7	4.757	0.8203	0.31	4.7	4	5.3	3.9	6.1	0
Chloride (mg/L)	LPLF8	12	10.41	2.069	0.5973	9.6	8.9	11.5	8.2	15	0

Constituent Name	Well	N	Mean S	Standard Deviation	Standard Error	Median	Lower Quartile,	Upper Quartile,	Minimum	Maximum	% Non-Detects
Dis. Arsenic (mg/L)	LPLF1 (bg)	6	0.00125	0.001099	0.0004485	0.0008	0.00055	0.0024	0.0005	0.0034	0
Dis. Arsenic (mg/L)	LPLF2	23	0.0008391	0.002439	0.0005086	0.0003	0.0002	0.0005	0.0001	0.012	0
Dis. Arsenic (mg/L)	LPLF3	23	0.0004609	0.0003448	0.00007189	0.0003	0.0002	0.0005	0.0002	0.0014	0
Dis. Arsenic (mg/L)	LPLF4 (bg)	23	0.0003957	0.0001522	0.00003173	0.0004	0.0003	0.0005	0.0001	0.0007	0
Dis. Arsenic (mg/L)	LPLF5 (bg)	7	0.001657	0.0004685	0.0001771	0.0015	0.0014	0.0022	0.001	0.0023	0
Dis. Arsenic (mg/L)	LPLF8	12	0.0054	0.00218	0.0006293	0.005	0.00395	0.0065	0.0027	0.0108	0
Dis. Barium (mg/L)	LPLF1 (bg)	6	0.0465	0.02627	0.01072	0.0365	0.034	0.069	0.033	0.1	0
Dis. Barium (mg/L)	LPLF2	23	0.06217	0.01678	0.003498	0.061	0.049	0.069	0.04	0.109	0
Dis. Barium (mg/L)	LPLF3	23	0.1187	0.02585	0.005389	0.122	0.116	0.136	0.033	0.155	0
Dis. Barium (mg/L)	LPLF4 (bg)	23	0.09822	0.1248	0.02602	0.066	0.06	0.075	0.001	0.5	
Dis. Barium (mg/L)	LPLF5 (bg)	7	0.05871	0.008118	0.003068	0.059	0.052	0.063	0.048	0.072	0
Dis. Barium (mg/L)	LPLF8	12	0.02442	0.007585	0.00219	0.021	0.019	0.0285	0.018	0.039	0
Dis. Boron (mg/L)	LPLF1 (bg)	6	0.7978	0.08147	0.03326	0.801	0.7125				0
Dis. Boron (mg/L)	LPLF2	23	0.167	0.01496	0.00312						0
Dis. Boron (mg/L)	LPLF3	23	0.2796	0.1332	0.02777	0.251	0.234	0.269	0.151	0.87	0
Dis. Boron (mg/L)	LPLF4 (bg)	23	0.208	0.04798	0.01	0.209	0.188	0.241	0.05	0.28	0
Dis. Boron (mg/L)	LPLF5 (bg)	7	0.1861	0.02816	0.01064	0.203	0.155	0.211	0.153	0.213	0
Dis. Boron (mg/L)	LPLF8	12	0.7154	0.1173		0.6655				0.994	
Dis. Chromium (mg/L)	LPLF1 (bg)	5	0.0007	0.0002739	0.0001225	0.0005	0.0005	0.001	0.0005	0.001	60
Dis. Chromium (mg/L)	LPLF2	23	0.0005	0	0	0.0005	0.0005	0.0005	0.0005	0.0005	100
Dis. Chromium (mg/L)	LPLF3	23	0.0005	0	0	0.0005	0.0005	0.0005	0.0005	0.0005	100
Dis. Chromium (mg/L)	LPLF4 (bg)	23	0.0005217	0.0001043	0.00002174	0.0005	0.0005	0.0005	0.0005	0.001	95.65
Dis. Chromium (mg/L)	LPLF5 (bg)	7	0.0005	0	0	0.0005	0.0005	0.0005	0.0005	0.0005	100
Dis. Chromium (mg/L)	LPLF8	12	0.0005	0	0	0.0005	0.0005	0.0005	0.0005	0.0005	100
Dis. Hardness (mg/L)	LPLF1 (bg)	6	1064	400	163.3	1230	672	1290	264	1320	0
Dis. Hardness (mg/L)	LPLF2	23	856.5	145.9	30.43	843	718	935	652	1160	0
Dis. Hardness (mg/L)	LPLF3	23	162.1	19.96	4.162	155	146	176	137	211	0
Dis. Hardness (mg/L)	LPLF4 (bg)	23	66.61	5.975	1.246	66	62	68	58	79	0
Dis. Hardness (mg/L)	LPLF5 (bg)	7	472.6	23.5	8.882	473	461	493	430	500	0
Dis. Hardness (mg/L)	LPLF8	12	2033	143.7	41.49	2070	1915	2140	1770	2250	0
Dis. Lead (mg/L)	LPLF1 (bg)	6	0.00015	0.00008367	0.00003416	0.0001	0.0001	0.00025	0.0001	0.0003	66.67
Dis. Lead (mg/L)	LPLF2	23	0.0001043	0.00002085	0.000004348	0.0001	0.0001	0.0001	0.0001	0.0002	95.65
Dis. Lead (mg/L)	LPLF3	23	0.0001261	0.0001251	0.00002609	0.0001	0.0001	0.0001	0.0001	0.0007	95.65
Dis. Lead (mg/L)	LPLF4 (bg)	23	0.0002174	0.0004997	0.0001042	0.0001	0.0001	0.0001	0.0001	0.0025	86.96
Dis. Lead (mg/L)	LPLF5 (bg)	7	0.0001571	0.0001512	0.00005714	0.0001	0.0001	0.0001	0.0001	0.0005	85.71
Dis. Lead (mg/L)	LPLF8	12	0.0001833	0.0002887	0.00008333	0.0001	0.0001	0.0001	0.0001	0.0011	91.67

Constituent Name	Well	N	Mean	Standard Deviation	Standard Error	Median	Lower Quartile,	Upper Quartile,	Minimum	Maximum	% Non-Detects
Dis. Mercury (mg/L)	LPLF1 (bg)	6	0.00002	0.00001673	0.000006831	0.00001	0.00001	0.00004	0.00001	0.00005	66.67
Dis. Mercury (mg/L)	LPLF2	23	0.00001	0	0	0.00001	0.00001	0.00001	0.00001	0.00001	100
Dis. Mercury (mg/L)	LPLF3	23	0.00001174	0.000008341	0.000001739	0.00001	0.00001	0.00001	0.00001	0.00005	95.65
Dis. Mercury (mg/L)	LPLF4 (bg)	23	0.00001043	0.000002085	4.30E-07	0.00001	0.00001	0.00001	0.00001	0.00002	95.65
Dis. Mercury (mg/L)	LPLF5 (bg)	7	0.00001	0	0	0.00001	0.00001	0.00001	0.00001	0.00001	100
Dis. Mercury (mg/L)	LPLF8	12	0.00001	0	0	0.00001	0.00001	0.00001	0.00001	0.00001	100
Dis. Silver (mg/L)	LPLF1 (bg)	6	0.00003167	0.00002639	0.00001078	0.000025	0.00001	0.00006	0.00001	0.00008	33.33
Dis. Silver (mg/L)	LPLF2	23	0.00001826	0.00001696	0.000003537	0.00001	0.00001	0.00002	0.00001	0.00008	69.57
Dis. Silver (mg/L)	LPLF3	23	0.00001435	0.0000108	0.000002252	0.00001	0.00001	0.00001	0.00001	0.00005	82.61
Dis. Silver (mg/L)	LPLF4 (bg)	23	0.00001043	0.000002085	4.30E-07	0.00001	0.00001	0.00001	0.00001	0.00002	95.65
Dis. Silver (mg/L)	LPLF5 (bg)	7	0.00001	0	0	0.00001	0.00001	0.00001	0.00001	0.00001	100
Dis. Silver (mg/L)	LPLF8	12	0.00004333	0.00004459	0.00001287	0.00001	0.00001	0.00009	0.00001	0.00013	58.33
Dis. Sulfite (mg/L)	LPLF1 (bg)	6	0.25	0	0	0.25	0.25				100
Dis. Sulfite (mg/L)	LPLF2	23	0.4565	0.9904	0.2065	0.25	0.25				
Dis. Sulfite (mg/L)	LPLF3	23	0.8348	1.373	0.2863	0.25	0.25	0.25	0.25	5.3	
Dis. Sulfite (mg/L)	LPLF4 (bg)	23	0.2848	0.1238	0.02581	0.25	0.25		0.25	0.8	91.3
Dis. Sulfite (mg/L)	LPLF5 (bg)	7	0.25	0	0	0.25	0.25				
Dis. Sulfite (mg/L)	LPLF8	12	0.25	0	0	0.25	0.25				
Fluoride (mg/L)	LPLF1 (bg)	6	0.2083	0.1214	0.04956	0.155	0.14				
Fluoride (mg/L)	LPLF2	23	0.06913	0.03999	0.008339	0.05	0.04	0.09	0.03	0.18	0
Fluoride (mg/L)	LPLF3	23	0.1222	0.04776	0.00996	0.1	0.09	0.14	0.07	0.26	0
Fluoride (mg/L)	LPLF4 (bg)	23	0.2609	0.05984	0.01248	0.26	0.25	0.28	0.09	0.41	0
Fluoride (mg/L)	LPLF5 (bg)	7	0.1386	0.03185	0.01204	0.14	0.11	0.18	0.1	0.18	
Fluoride (mg/L)	LPLF8	12	0.1333	0.06527	0.01884	0.115	0.1	0.155	0.05		0
Iron (mg/L)	LPLF1 (bg)	6	0.1272	0.1653	0.06748	0.0785	0.0135				0
Iron (mg/L)	LPLF2	23	0.1147	0.1412	0.02945	0.044	0.019				
Iron (mg/L)	LPLF3	23	0.03674	0.06595	0.01375	0.02	0.01	0.034		0.324	
Iron (mg/L)	LPLF4 (bg)	23	0.21	0.1959	0.04084	0.151	0.073				0
Iron (mg/L)	LPLF5 (bg)	7	0.5186	0.9864	0.3728	0.06	0.06		0.02	2.71	0
Iron (mg/L)	LPLF8	12	809.7	213.5	61.63	795	612	967	516		
Magnesium (mg/L)	LPLF1 (bg)	6	72.93	28.28	11.54	80.75	47.65		16.3	93.2	0
Magnesium (mg/L)	LPLF2	23	51.79	9.192	1.917	51.3	42.4	57	40.6	72.3	0
Magnesium (mg/L)	LPLF3	23	11.08	1.276	0.2661	11.1	9.9	12.3	9.4		
Magnesium (mg/L)	LPLF4 (bg)	23	5.557	0.374	0.07797	5.6	5.4	5.7	5		
Magnesium (mg/L)	LPLF5 (bg)	7	29.36	1.484	0.561	28.6	28.1	30.4	27.9		
Magnesium (mg/L)	LPLF8	12	181.3	14.03	4.051	179	172	193.5	159	206	0

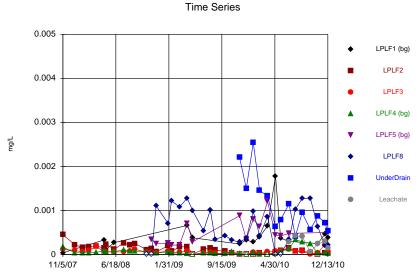
Constituent Name	Well	N N	Mean	Standard Deviation	Standard Error	Median	Lower Quartile,	Upper Quartile,	Minimum	Maximum	% Non-Detects
Manganese (mg/L)	LPLF1 (bg)	6	0.5998	0.3027	0.1236	0.6155	0.2925	0.8915	0.26	0.913	0
Manganese (mg/L)	LPLF2	23	0.3297	0.3217	0.06708	0.235	0.036	0.633	0.013	1.03	0
Manganese (mg/L)	LPLF3	23	0.04787	0.0643	0.01341	0.02	0.012	0.073	0.007	0.28	0
Manganese (mg/L)	LPLF4 (bg)	23	0.1121	0.05947	0.0124	0.089	0.063	0.164	0.045	0.249	0
Manganese (mg/L)	LPLF5 (bg)	7	0.322	0.05759	0.02177	0.313		0.361	0.252	0.417	0
Manganese (mg/L)	LPLF8	12	14.18	2.248	0.649	14.3	12.6	15.8	10.7	18.1	0
Nitrate (mg/L)	LPLF1 (bg)	6	2.333	2.258	0.9218	2.055	0.395	4.55	0.01	6.5	16.67
Nitrate (mg/L)	LPLF2	23	0.3448	0.435	0.0907	0.25	0.15	0.47	0.01	2.16	4.348
Nitrate (mg/L)	LPLF3	23	0.5557	0.2698	0.05625	0.62	0.39	0.69	0.04	0.99	0
Nitrate (mg/L)	LPLF4 (bg)	23	0.04174	0.03725	0.007768	0.03	0.01	0.07	0.01	0.13	39.13
Nitrate (mg/L)	LPLF5 (bg)	7	0.08143	0.08295	0.03135	0.06	0.02	0.11	0.01	0.25	14.29
Nitrate (mg/L)	LPLF8	12	0.1008	0.0902	0.02604	0.075	0.03	0.15	0.01	0.3	25
Nitrate-Nitrite (mg/L)	LPLF1 (bg)	6	2.35	2.251	0.9191	2.09	0.41	4.55	0.01	6.5	16.67
Nitrate-Nitrite (mg/L)	LPLF2	23	0.3491	0.4333	0.09034	0.25	0.15	0.47	0.04	2.16	0
Nitrate-Nitrite (mg/L)	LPLF3	23	0.563	0.2668	0.05563	0.64	0.4	0.7	0.05	0.99	0
Nitrate-Nitrite (mg/L)	LPLF4 (bg)	23	0.04174	0.03725	0.007768	0.03	0.01	0.07	0.01	0.13	39.13
Nitrate-Nitrite (mg/L)	LPLF5 (bg)	7	0.1057	0.07764	0.02935	0.09	0.05	0.14	0.03	0.26	0
Nitrate-Nitrite (mg/L)	LPLF8	12	0.1217	0.0882	0.02546	0.105	0.055	0.17	0.01	0.3	8.333
Nitrite (mg/L)	LPLF1 (bg)	6	0.03483	0.02921	0.01193	0.022	0.012	0.0705	0.011	0.081	0
Nitrite (mg/L)	LPLF2	23	0.005804	0.005819	0.001213	0.0025	0.0025	0.009	0.0025	0.023	65.22
Nitrite (mg/L)	LPLF3	23	0.008522	0.007889	0.001645	0.005	0.0025	0.012	0.0025	0.032	43.48
Nitrite (mg/L)	LPLF4 (bg)	23	0.0025	0	0	0.0025	0.0025	0.0025	0.0025	0.0025	100
Nitrite (mg/L)	LPLF5 (bg)	7	0.007214	0.01101	0.00416	0.0025	0.0025	0.006	0.0025	0.032	71.43
Nitrite (mg/L)	LPLF8	12	0.02258	0.03213	0.009275	0.00525	0.0025	0.0375	0.0025	0.11	50
pH (SIU)	LPLF1 (bg)	6	6.765	0.1983	0.08094	6.785	6.575	6.935	6.4	6.98	0
pH (SIU)	LPLF2	23	6.543	0.2448	0.05104	6.51	6.41	6.67	6.1	7.14	0
pH (SIU)	LPLF3	23	6.753	0.4507	0.09398	6.85	6.6	7	5.23	7.36	0
pH (SIU)	LPLF4 (bg)	23	6.601	0.5264	0.1098	6.73	6.5	6.8	5.1	7.4	0
pH (SIU)	LPLF5 (bg)	7	6.743	0.2225	0.08411	6.7	6.6	6.9	6.4	7.1	0
pH (SIU)	LPLF8	12	5.698	0.2553	0.07369	5.64	5.5	5.955	5.3	6	0
Potassium (mg/L)	LPLF1 (bg)	6	16.45	2.892	1.181	17.95	13	18.4	11.3	18.6	0
Potassium (mg/L)	LPLF2	23	5.822	0.9793	0.2042	5.5	5	6.6	4.6	8	0
Potassium (mg/L)	LPLF3	23	4.465	0.6278	0.1309	4.3	4.1	4.6	3.7	6.6	0
Potassium (mg/L)	LPLF4 (bg)	23	1.674	0.1137	0.02371	1.6	1.6	1.8	1.5	1.9	0
Potassium (mg/L)	LPLF5 (bg)	7	4.9	0.866	0.3273	4.5	4.2	5.9	4.1	6.3	0
Potassium (mg/L)	LPLF8	12	13.05	0.8196	0.2366	12.75	12.55	13.65	11.9	14.6	0


APPENDIX B - Descriptive Statistics

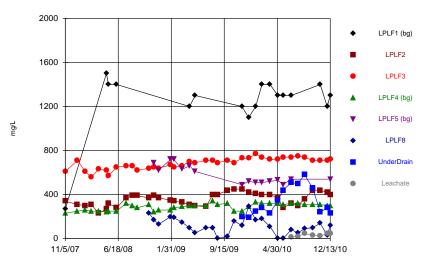
Constituent Name	Well	N	Mean	Standard Deviation	Standard Error	Median	Lower Quartile,	Upper Quartile,	Minimum	Maximum	% Non-Detects
Selenium (mg/L)	LPLF1 (bg)	6	0.0001833	0.0001125	0.00004595	0.0002	0.00005	0.0003	0.00005	0.0003	33.33
Selenium (mg/L)	LPLF2	23	0.00008478	0.00005728	0.00001194	0.00005	0.00005	0.0001	0.00005	0.0002	65.22
Selenium (mg/L)	LPLF3	23	0.00008043	0.00007796	0.00001625	0.00005	0.00005	0.0001	0.00005	0.0004	73.91
Selenium (mg/L)	LPLF4 (bg)	23	0.00005	0	0	0.00005	0.00005	0.00005	0.00005	0.00005	100
Selenium (mg/L)	LPLF5 (bg)	7	0.00007143	0.00002673	0.0000101	0.00005	0.00005	0.0001	0.00005	0.0001	57.14
Selenium (mg/L)	LPLF8	12	0.000125	0.0001288	0.00003718	0.00005	0.00005	0.0002	0.00005	0.0004	66.67
Sodium (mg/L)	LPLF1 (bg)	6	927.7	362.4	147.9	1085	563	1135	207	1150	0
Sodium (mg/L)	LPLF2	23	101.4	12.56	2.619	101	92	108	80	130	0
Sodium (mg/L)	LPLF3	23	269.5	16.1	3.356						
Sodium (mg/L)	LPLF4 (bg)	23	81.39	13.04	2.719	82	73	90	61	107	0
Sodium (mg/L)	LPLF5 (bg)	7	174.6	44.44	16.8	148					0
Sodium (mg/L)	LPLF8	12	152.4	14.32	4.135						
Specific Conductance (uS/cm)	LPLF1 (bg)	6	3539	1341	547.6						
Specific Conductance (uS/cm)	LPLF2	23	1319	310.8	64.82						
Specific Conductance (uS/cm)	LPLF3	23	1053	224.8	46.87	1037				1925	
Specific Conductance (uS/cm)	LPLF4 (bg)	23	374.7	104.1	21.7						
Specific Conductance (uS/cm)	LPLF5 (bg)	7	1200	200	75.59	1100	1000	1400	1000	1500	0
Specific Conductance (uS/cm)	LPLF8	12	3911	443.8	128.1	3874					
Sulfate (mg/L)	LPLF1 (bg)	6	2009	778.8		2200					
Sulfate (mg/L)	LPLF2	23	694	146.2		700		800	450		
Sulfate (mg/L)	LPLF3	23	199.4	39.65		190		244	140	260	0
Sulfate (mg/L)	LPLF4 (bg)	23	21.39	11.19		17					
Sulfate (mg/L)	LPLF5 (bg)	7	301.4	84.35		260					
Sulfate (mg/L)	LPLF8	12	3550	566.5		3600					
TDS (mg/L)	LPLF1 (bg)	6	3767	1194	487.6						
TDS (mg/L)	LPLF2	23	1339	210.5		1300					
TDS (mg/L)	LPLF3	23	860.9	80.28	16.74						
TDS (mg/L)	LPLF4 (bg)	23	310.4	61.61	12.85						
TDS (mg/L)	LPLF5 (bg)	7	998.6	162.4	61.39	910					
TDS (mg/L)	LPLF8	12	4600	822.4	237.4						
Temperature (Deg C)	LPLF1 (bg)	6	12.73	0.7312							
Temperature (Deg C)	LPLF2	23	11.6	1.37	0.2857	12					
Temperature (Deg C)	LPLF3	23	11.69	1.038	0.2164	11.3		12.4		14	
Temperature (Deg C)	LPLF4 (bg)	23	12.31	1.692		12.3		14			
Temperature (Deg C)	LPLF5 (bg)	7	12.29	1.976		11		14		16	
Temperature (Deg C)	LPLF8	12	12.89	0.903	0.2607	12.95	12	13.05	12	15	0

APPENDIX B - Descriptive Statistics

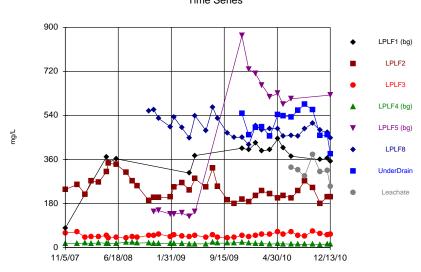
Constituent Name	Well	N	Mean	Standard Deviation	Standard Error	Median	Lower Quartile,	Upper Quartile,	Minimum	Maximum	% Non-Detects
TOC (mg/L)	LPLF1 (bg)	6	44.53	96.25	39.29	5.3	4.9	123.4	4.9	241	0
TOC (mg/L)	LPLF2	23	13.47	59.85	12.48	1	0.25	1.7	0.25	288	34.78
TOC (mg/L)	LPLF3	23	14.3	59.67	12.44	1.8	1.4	2.6	0.25	288	4.348
TOC (mg/L)	LPLF4 (bg)	23	13.14	54.25	11.31	1.9	1.5	2.2	0.25	262	8.696
TOC (mg/L)	LPLF5 (bg)	7	2.571	1.447	0.5467	2.1	1.8	2.6	1.3	5.7	0
TOC (mg/L)	LPLF8	12	7.167	2.719	0.7849	7.55	5.15	9.65	1.9	10.5	0
Zinc (mg/L)	LPLF1 (bg)	2	0.0135	0.002121	0.0015	0.0135	0.0135	0.0135	0.012	0.015	0
Zinc (mg/L)	LPLF2	23	0.005587	0.002687	0.0005603	0.005	0.0025	0.007	0.0025	0.011	30.43
Zinc (mg/L)	LPLF3	23	0.002652	0.0007298	0.0001522	0.0025	0.0025	0.0025	0.0025	0.006	95.65
Zinc (mg/L)	LPLF4 (bg)	23	0.002935	0.00151	0.0003148	0.0025	0.0025	0.0025	0.0025	0.009	91.3
Zinc (mg/L)	LPLF5 (bg)	7	0.0085	0.003253	0.00123	0.009	0.007	0.01	0.0025	0.013	14.29
Zinc (mg/L)	LPLF8	12	0.6258	0.09664	0.0279	0.6085	0.5535	0.6885	0.494	0.833	0


Time Series

Constituent: Ammonia Analysis Run 01/25/2011 1:14 PM

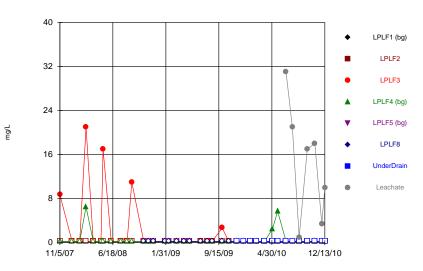

Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA Hollow symbols indicate censored values.

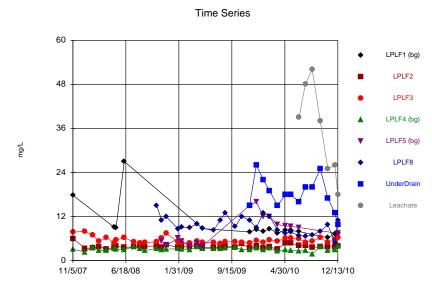

Constituent: Cadmium Analysis Run 01/25/2011 1:14 PM
Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

Time Series

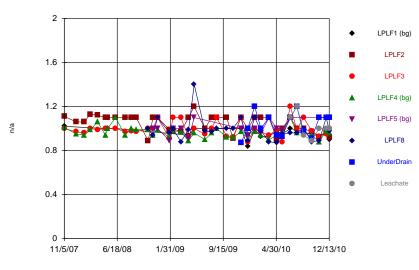
Constituent: Bicarbonate Analysis Run 01/25/2011 1:14 PM
Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_


v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA

Constituent: Calcium Analysis Run 01/25/2011 1:14 PM


Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

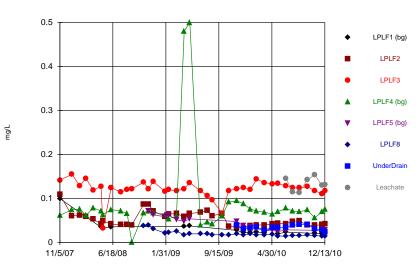
Time Series


Constituent: Carbonate Analysis Run 01/25/2011 1:15 PM
Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA

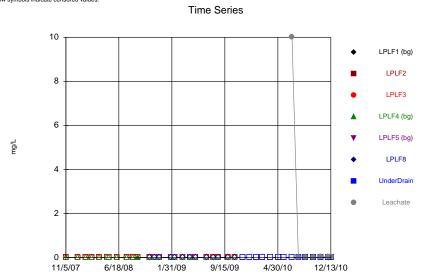
Constituent: Chloride Analysis Run 01/25/2011 1:15 PM
Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

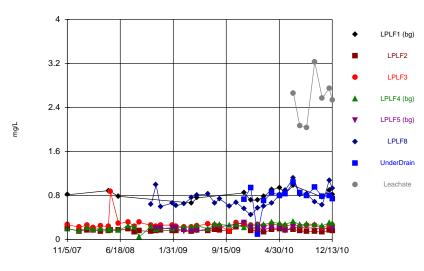
Time Series


Constituent: Cation Balance Analysis Run 01/25/2011 1:15 PM
Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

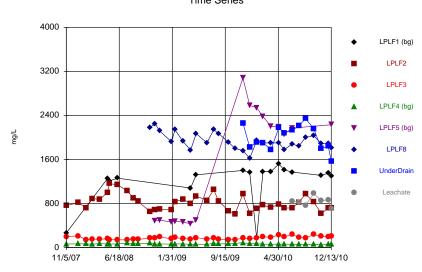
$v.9.1.20\,For\,the\,statistical\,analyses\,of\,ground\,water\,by\,TransAlta\,Centralia\,Mining\,LLC\,only.\,EPA\,Hollow\,symbols\,indicate\,censored\,values.$

Time Series 0.02 LPLF1 (bg) LPLF2 0.016 LPLF3 LPLF4 (bg) 0.012 LPLF5 (bg) LPLF8 0.008 UnderDrain Leachate 0.004 6/18/08 1/31/09 9/15/09 4/30/10 11/5/07 12/13/10

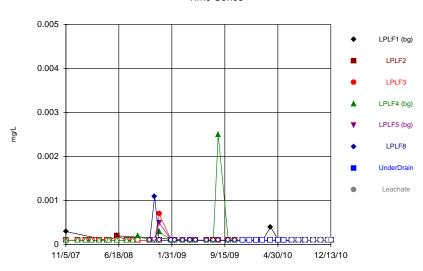

Constituent: Dis. Arsenic Analysis Run 01/25/2011 1:15 PM
Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_


Constituent: Dis. Barium Analysis Run 01/25/2011 1:16 PM
Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA Hollow symbols indicate censored values.

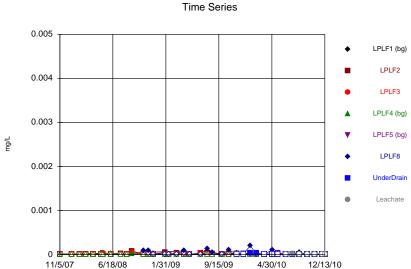

Constituent: Dis. Chromium Analysis Run 01/25/2011 1:16 PM
Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data Dec 2010_

Time Series

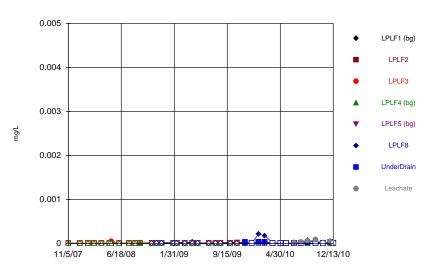

Constituent: Dis. Boron Analysis Run 01/25/2011 1:16 PM
Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA

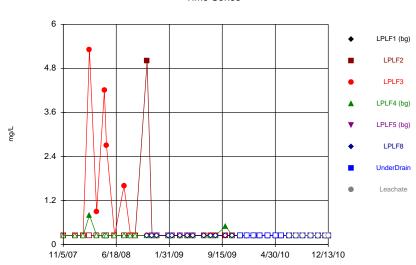
Constituent: Dis. Hardness Analysis Run 01/25/2011 1:16 PM
Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_



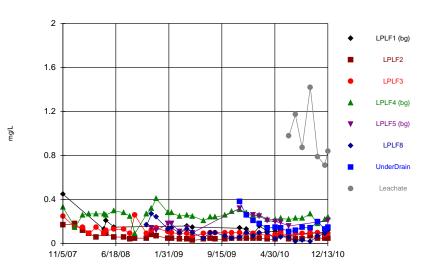
Constituent: Dis. Lead Analysis Run 01/25/2011 1:16 PM


Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

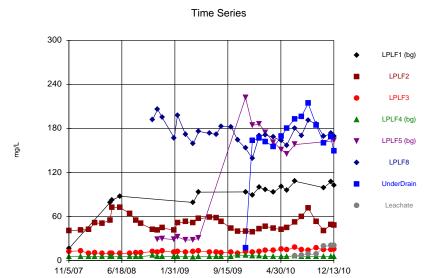
v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA Hollow symbols indicate censored values.


Constituent: Dis. Silver Analysis Run 01/25/2011 1:16 PM
Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

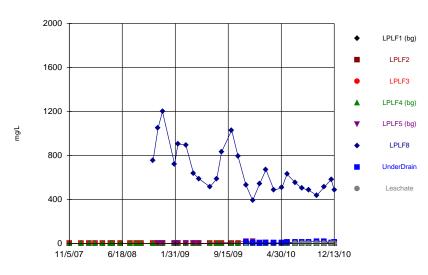
Time Series


Constituent: Dis. Mercury Analysis Run 01/25/2011 1:16 PM
Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

$v.9.1.20\,For\,the\,statistical\,analyses\,of\,ground\,water\,by\,TransAlta\,Centralia\,Mining\,LLC\,only.\,EPA\,Hollow\,symbols\,indicate\,censored\,values.$

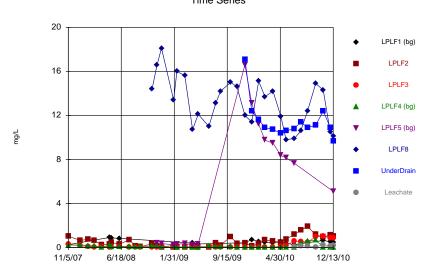

Constituent: Dis. Sulfite Analysis Run 01/25/2011 1:16 PM
Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

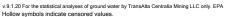
Time Series


Constituent: Fluoride Analysis Run 01/25/2011 1:17 PM
Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA

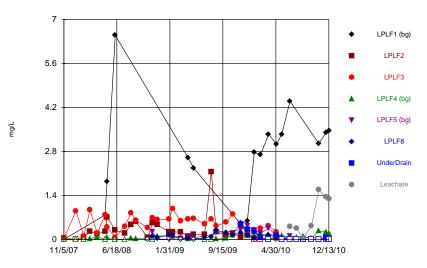
Constituent: Magnesium Analysis Run 01/25/2011 1:17 PM
Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data Dec 2010_


Time Series

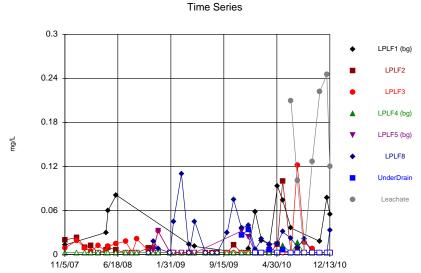

Constituent: Iron Analysis Run 01/25/2011 1:17 PM

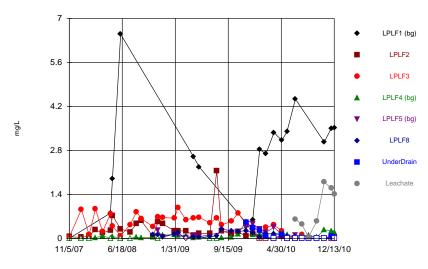
Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA



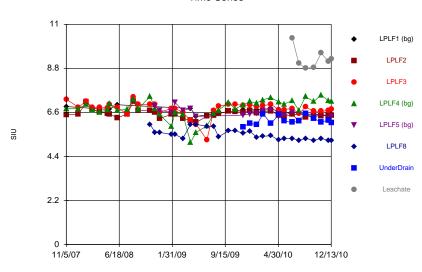
Constituent: Manganese Analysis Run 01/25/2011 1:17 PM
Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_


APPENDIX B


Constituent: Nitrate Analysis Run 01/25/2011 1:17 PM
Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

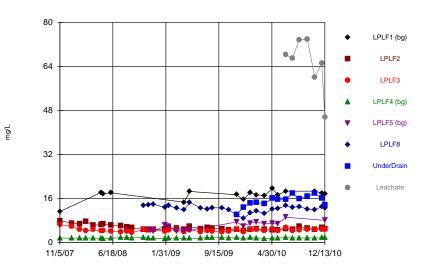
v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA Hollow symbols indicate censored values.

Constituent: Nitrite Analysis Run 01/25/2011 1:17 PM
Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

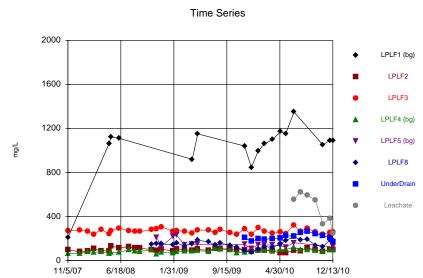

Time Series

Constituent: Nitrate-Nitrite Analysis Run 01/25/2011 1:17 PM

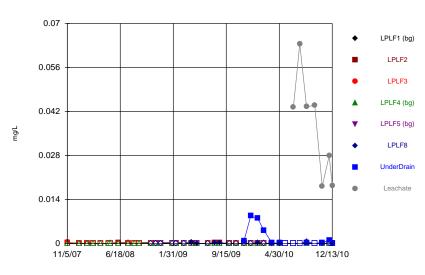
Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_


v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA

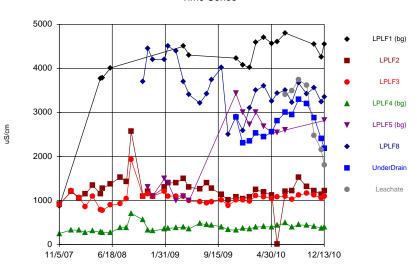
Constituent: pH Analysis Run 01/25/2011 1:17 PM


Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

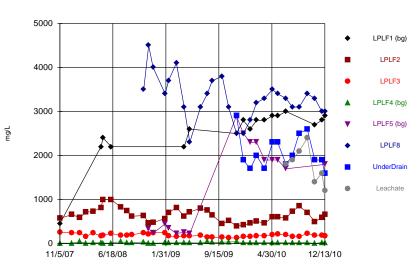
Time Series


Constituent: Potassium Analysis Run 01/25/2011 1:18 PM
Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

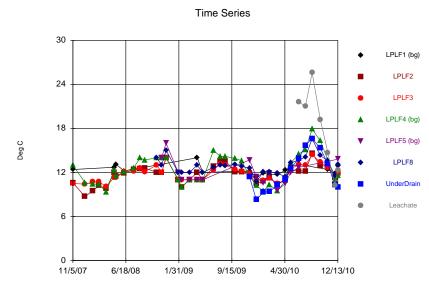
v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA


Constituent: Sodium Analysis Run 01/25/2011 1:18 PM
Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

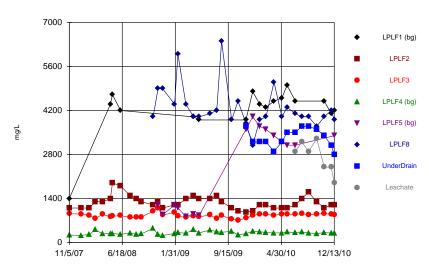
Time Series


Constituent: Selenium Analysis Run 01/25/2011 1:18 PM
Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA


Constituent: Specific Conductance Analysis Run 01/25/2011 1:18 PM
Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

Time Series


Constituent: Sulfate Analysis Run 01/25/2011 1:18 PM

v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA

Constituent: Temperature Analysis Run 01/25/2011 1:18 PM
Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

Time Series

Constituent: TDS Analysis Run 01/25/2011 1:18 PM

Time Series

$v.9.1.20\,For\,the\,statistical\,analyses\,of\,ground\,water\,by\,TransAlta\,Centralia\,Mining\,LLC\,only.\,EPA\,Hollow\,symbols\,indicate\,censored\,values.$

6/18/08

11/5/07

300 240 LPLF1 (bg) LPLF2 LPLF3 (bg) LPLF5 (bg) LPLF8 UnderDrain Leachate

Constituent: TOC Analysis Run 01/25/2011 1:18 PM

Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

9/15/09


1/31/09

12/13/10

4/30/10

v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA
Hollow symbols indicate censored values.

Time Series

Constituent: Zinc Analysis Run 01/25/2011 1:18 PM

Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

Appendix C

Test for Trend via Mann-Kendall/Sen's Slope

<u>Legend for Sen's Slope Evaluation:</u>

Slope: The calculated "best fit" line for the well-constituent pair.

Mann-K: The Mann-Kendall statistic.

Critical: The critical value to which the Mann-Kendall statistic is compared. When the Mann-Kendall statistic exceeds the critical value, a trend is identified.

Trend: Indicates if a statistically significant trend has been identified.

N: Number of data points used for the evaluation.

Alpha: An alpha value of 0.05 indicates a 5% probability that a trend will be incorrectly indentified.

Sen's Slope plots are presented for well-constituent pairs where statistically-significant trends were identified. Refer to Table 4-1 for significant cases.

Appendix C - Mann-Kendall Trend Results via Sanitas

Constituent Name	Well	Slope	Mann-Kendall		Trend		Alpha
Ammonia (mg/L)	LPLF1 (bg)	-0.3699	-44	-49	No	17	0.05
Ammonia (mg/L)	LPLF2	0.1116	206	158		38	0.05
Ammonia (mg/L)	LPLF3	0.05941	83			38	0.05
Ammonia (mg/L)	LPLF4 (bg)	-0.04807	-236			38	0.05
Ammonia (mg/L)	LPLF5 (bg)	0.05548	18		No	16	0.05
Ammonia (mg/L)	LPLF8	-0.1417	-28			27	0.05
Ammonia (mg/L)	UnderDrain	0.5863	35		No	14	0.05
Ammonia (mg/L)	Leachate	0.08022	1		No	7	0.05
Bicarbonate (mg/L)	LPLF1 (bg)	0	-2			17	0.05
Bicarbonate (mg/L)	LPLF2	29.8	230		Yes	38	0.05
Bicarbonate (mg/L)	LPLF3	47.1	454		Yes	38	0.05
Bicarbonate (mg/L)	LPLF4 (bg)	22.08	307	158	Yes	38	0.05
Bicarbonate (mg/L)	LPLF5 (bg)	-96.35	-51	-45	Yes	16	0.05
Bicarbonate (mg/L)	LPLF8	-42.75	-95	-96	No	27	0.05
Bicarbonate (mg/L)	UnderDrain	269.5	27	37	No	14	0.05
Bicarbonate (mg/L)	Leachate	64.18	11		No	7	0.05
Cadmium (mg/L)	LPLF1 (bg)	0.0000765	40	49	No	17	0.05
Cadmium (mg/L)	LPLF2	-0.00006919	-378	-158	Yes	38	0.05
Cadmium (mg/L)	LPLF3	-0.000009656	-131	-158	No	38	0.05
Cadmium (mg/L)	LPLF4 (bg)	-0.000009682	-133	-158	No	38	0.05
Cadmium (mg/L)	LPLF5 (bg)	0.0001438	46	45	Yes	16	0.05
Cadmium (mg/L)	LPLF8	-0.0001095	-36	-96	No	27	0.05
Cadmium (mg/L)	UnderDrain	-0.001239	-57	-37	Yes	14	0.05
Cadmium (mg/L)	Leachate	-0.0003476	-7	-15	No	7	0.05
Calcium (mg/L)	LPLF1 (bg)	16.51	26	49	No	17	0.05
Calcium (mg/L)	LPLF2	-19.37	-222	-158	Yes	38	0.05
Calcium (mg/L)	LPLF3	3.185	210	158	Yes	38	0.05
Calcium (mg/L)	LPLF4 (bg)	-1.412	-275	-158	Yes	38	0.05
Calcium (mg/L)	LPLF5 (bg)	271.1	32	45	No	16	0.05
Calcium (mg/L)	LPLF8	-32.9	-123	-96	Yes	27	0.05
Calcium (mg/L)	UnderDrain	-3.578	-3	-37	No	14	0.05
Calcium (mg/L)	Leachate	-139.4	-9	-15	No	7	0.05
Carbonate (mg/L)	LPLF3	0	-107	-158	No	38	0.05
Carbonate (mg/L)	Leachate	-38.58	-9	-15	No	7	0.05
Chloride (mg/L)	LPLF1 (bg)	-1.304	-92	-49	Yes	17	0.05
Chloride (mg/L)	LPLF2	0.0548	91	158	No	38	0.05
Chloride (mg/L)	LPLF3	0	-19	-158	No	38	0.05
Chloride (mg/L)	LPLF4 (bg)	0	-39	-158	No	38	0.05
Chloride (mg/L)	LPLF5 (bg)	2.253	23	45	No	16	0.05
Chloride (mg/L)	LPLF8	-1.712	-121	-96	Yes	27	0.05
Chloride (mg/L)	UnderDrain	-5.118	-22	-37	No	14	0.05
Chloride (mg/L)	Leachate	-63.73	-13	-15	No	7	0.05
Dis. Arsenic (mg/L)	LPLF1 (bg)	-0.0002761	-85	-49	Yes	17	0.05
Dis. Arsenic (mg/L)	LPLF2	-0.00008346	-251	-158	Yes	38	0.05
Dis. Arsenic (mg/L)	LPLF3	-0.0001409	-392	-158	Yes	38	0.05
Dis. Arsenic (mg/L)	LPLF4 (bg)	-0.00003373	-201	-158	Yes	38	0.05
Dis. Arsenic (mg/L)	LPLF5 (bg)	-0.0009233	-89	-45	Yes	16	0.05
Dis. Arsenic (mg/L)	LPLF8	0.001197	54	96	No	27	0.05
Dis. Arsenic (mg/L)	UnderDrain	-0.0001046	-19	-37	No	14	0.05
Dis. Arsenic (mg/L)	Leachate	-0.002028	-10	-15	No	7	0.05
Dis. Barium (mg/L)	LPLF1 (bg)	-0.006871	-79	-49	Yes	17	0.05
Dis. Barium (mg/L)	LPLF2	-0.006677	-200	-158	Yes	38	0.05
Dis. Barium (mg/L)	LPLF3	-0.002296	-91	-158	No	38	0.05
Dis. Barium (mg/L)	LPLF4 (bg)	0.0007652	33	158	No	38	0.05
Dis. Barium (mg/L)	LPLF5 (bg)	-0.02484	-101	-45	Yes	16	0.05
Dis. Barium (mg/L)	LPLF8	-0.004571	-245	-96	Yes	27	0.05
Dis. Barium (mg/L)	UnderDrain	-0.00149	-9	-37	No	14	0.05
Dis. Barium (mg/L)	Leachate	0.02374	1	15	No	7	0.05
-							

Appendix C - Mann-Kendall Trend Results via Sanitas

Constituent Name	Well	Slope	Mann-Kendall	Critical Value	Trend	N	Alpha
Dis. Boron (mg/L)	LPLF1 (bg)	0.026	20	49	No	17	0.05
Dis. Boron (mg/L)	LPLF2	-0.001877	-49	-158		38	0.05
Dis. Boron (mg/L)	LPLF3	0	8	158		38	0.05
Dis. Boron (mg/L)	LPLF4 (bg)	0.0395	431	158		38	0.05
Dis. Boron (mg/L)	LPLF5 (bg)	0.002065	4		No	16	0.05
Dis. Boron (mg/L)	LPLF8	0.07189	81		No	27	0.05
Dis. Boron (mg/L)	UnderDrain	0.006661	1		No	14	0.05
Dis. Boron (mg/L)	Leachate	0.2147	1		No	7	0.05
Dis. Chromium (mg/L)	LPLF1 (bg)	0	-28	-45		16	0.05
Dis. Chromium (mg/L)	Leachate	0.005703	2		No	. 7	0.05
Dis. Hardness (mg/L)	LPLF1 (bg)	67.51	43		No	17	0.05
Dis. Hardness (mg/L)	LPLF2	-47.01	-147	-158		38	0.05
Dis. Hardness (mg/L)	LPLF3	15.99	262			38	0.05
Dis. Hardness (mg/L)	LPLF4 (bg)	-3.206	-237	-158		38	0.05
Dis. Hardness (mg/L)	LPLF5 (bg)	986.3	32		No	16	0.05
Dis. Hardness (mg/L)	LPLF8	-116.3	-134		Yes	27	0.05
Dis. Hardness (mg/L)	UnderDrain	-83.5	-9	-37		14	0.05
Dis. Hardness (mg/L)	Leachate	-185.8	-1	-15		7	0.05
Dis. Lead (mg/L)	LPLF1 (bg)	0	-21 -23	-49 -49		17 17	0.05
Dis. Mercury (mg/L) Dis. Mercury (mg/L)	LPLF1 (bg) LPLF2	0	-23 80			38	0.05 0.05
Dis. Mercury (mg/L)	LPLF5 (bg)	0	2		No	16	0.05
Dis. Mercury (mg/L)	LPLF8 (bg)	0	60		No	27	0.05
Dis. Mercury (mg/L)	UnderDrain	0	-11	-37		14	0.05
Dis. Mercury (mg/L)	Leachate	-0.00002199	-2	-37 -15		7	0.05
Dis. Silver (mg/L)	LPLF1 (bg)	-0.00002199	-47			17	0.05
Dis. Silver (mg/L)	LPLF2	0	-26			38	0.05
Dis. Silver (mg/L)	LPLF3	0	-46			36	0.05
Dis. Silver (mg/L)	LPLF8	0	-45			27	0.05
Dis. Silver (mg/L)	UnderDrain	0	-17	-37		14	0.05
Dis. Silver (mg/L)	Leachate	0	-4			7	0.05
Dis. Sulfite (mg/L)	LPLF3	0	-137	-158		38	0.05
Fluoride (mg/L)	LPLF1 (bg)	-0.03911	-76		Yes	17	0.05
Fluoride (mg/L)	LPLF2	-0.009432	-256			38	0.05
Fluoride (mg/L)	LPLF3	-0.0154	-297	-158	Yes	38	0.05
Fluoride (mg/L)	LPLF4 (bg)	-0.0167	-203	-158	Yes	38	0.05
Fluoride (mg/L)	LPLF5 (bg)	0.02571	24	45	No	16	0.05
Fluoride (mg/L)	LPLF8	-0.05328	-173	-96	Yes	27	0.05
Fluoride (mg/L)	UnderDrain	-0.1043	-37	-37	No	14	0.05
Fluoride (mg/L)	Leachate	-0.6021	-9	-15	No	7	0.05
Iron (mg/L)	LPLF1 (bg)	1.726	78		Yes	17	0.05
Iron (mg/L)	LPLF2	0.118	258		Yes	38	0.05
Iron (mg/L)	LPLF3	-0.006581	-166			38	0.05
Iron (mg/L)	LPLF4 (bg)	-0.06011	-417	-158		38	0.05
Iron (mg/L)	LPLF5 (bg)	0.6665	19		No	16	0.05
Iron (mg/L)	LPLF8	-170.5	-186		Yes	27	0.05
Iron (mg/L)	UnderDrain	9.76	35		No	14	0.05
Iron (mg/L)	Leachate	-2.848	-11	-15		7	0.05
Magnesium (mg/L)	LPLF1 (bg)	10.58	100		Yes	17	0.05
Magnesium (mg/L)	LPLF2	-0.2897	-15			38	0.05
Magnesium (mg/L)	LPLF3	1.867	382		Yes	38	0.05
Magnesium (mg/L)	LPLF4 (bg)	0.03219	62			38	0.05
Magnesium (mg/L)	LPLF5 (bg)	77.31	41		No	16	0.05
Magnesium (mg/L)	LPLF8	-4.977	-75	-96		27	0.05
Magnesium (mg/L)	UnderDrain	36.74	21		No	14	0.05
Magnesium (mg/L)	Leachate	33.88	18		Yes	7	0.05
Manganese (mg/L)	LPLF1 (bg)	-0.09368	-17			17	0.05
Manganese (mg/L)	LPLF2	0.1938	187	158	Yes	38	0.05

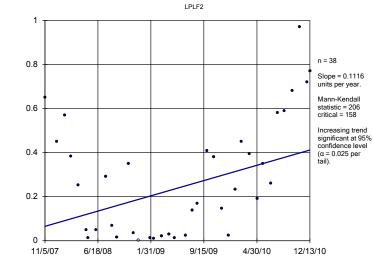
Appendix C - Mann-Kendall Trend Results via Sanitas

Constituent Name	Well	Slope	Mann-Kendall		Trend	N	Alpha
Manganese (mg/L)	LPLF3	0.01237	102		No	38	0.05
Manganese (mg/L)	LPLF4 (bg)	-0.03068	-242			38	0.05
Manganese (mg/L)	LPLF5 (bg)	2.598	20		No	16	0.05
Manganese (mg/L)	LPLF8	-1.77	-126		Yes	27	0.05
Manganese (mg/L)	UnderDrain	-1.448	-23		No	14	0.05
Manganese (mg/L)	Leachate	0.3318	8		No	7	0.05
Nitrate (mg/L)	LPLF1 (bg)	0.9106			Yes	17	0.05
Nitrate (mg/L)	LPLF2	-0.09656				38	0.05
Nitrate (mg/L)	LPLF3	-0.2129	-290			38	0.05
Nitrate (mg/L)	LPLF4 (bg)	0.04932			Yes	38	0.05
Nitrate (mg/L)	LPLF5 (bg)	0.01622			No	16	0.05
Nitrate (mg/L)	LPLF8	-0.02967	-93			27	0.05
Nitrate (mg/L)	UnderDrain	-0.1792	-43		Yes	14	0.05
Nitrate (mg/L)	Leachate	2.442	9		No	7	0.05
Nitrate-Nitrite (mg/L)	LPLF1 (bg)	0.8838	76		Yes	17	0.05
Nitrate-Nitrite (mg/L)	LPLF2	-0.1007	-330			38	0.05
Nitrate-Nitrite (mg/L)	LPLF3	-0.2333			Yes	38	0.05
Nitrate-Nitrite (mg/L)	LPLF4 (bg)	0.05	340 -7			38	0.05 0.05
Nitrate-Nitrite (mg/L)	LPLF5 (bg)	-0.01029			Yes	16 27	
Nitrate-Nitrite (mg/L) Nitrate-Nitrite (mg/L)	LPLF8 UnderDrain	-0.04363 -0.1792			Yes	14	0.05 0.05
Nitrate-Nitrite (mg/L)	Leachate	2.495	- 4 3		No	7	0.05
Nitrite (mg/L)	LPLF1 (bg)	0.006816	27		No	17	0.05
Nitrite (mg/L)	LPLF2	0.000010				38	0.05
Nitrite (mg/L)	LPLF3	0	-202			38	0.05
Nitrite (mg/L)	LPLF5 (bg)	0	-15			16	0.05
Nitrite (mg/L)	LPLF8	0	-11		No	27	0.05
Nitrite (mg/L)	UnderDrain	0	-33			14	0.05
Nitrite (mg/L)	Leachate	0.08588	5		No	7	0.05
pH (SIU)	LPLF1 (bg)	-0.1243			Yes	17	0.05
pH (SIU)	LPLF2	-0.0491	-150			38	0.05
pH (SIU)	LPLF3	-0.07249				38	0.05
pH (SIU)	LPLF4 (bg)	0.1629			Yes	38	0.05
pH (SIU)	LPLF5 (bg)	-0.1617				16	0.05
pH (SIU)	LPLF8	-0.2913	-211	-96	Yes	27	0.05
pH (SIU)	UnderDrain	0.1738	23	37	No	14	0.05
pH (SIU)	Leachate	0.2086	1	15	No	7	0.05
Potassium (mg/L)	LPLF1 (bg)	0.4029	28	49	No	17	0.05
Potassium (mg/L)	LPLF2	-0.6278	-313	-158	Yes	38	0.05
Potassium (mg/L)	LPLF3	0.07588	75	158	No	38	0.05
Potassium (mg/L)	LPLF4 (bg)	0	136	158	No	38	0.05
Potassium (mg/L)	LPLF5 (bg)	1.984	72		Yes	16	0.05
Potassium (mg/L)	LPLF8	-0.4484	-70		No	27	0.05
Potassium (mg/L)	UnderDrain	4.368	46	37	Yes	14	0.05
Potassium (mg/L)	Leachate	-25.85	-9	-15		7	0.05
Selenium (mg/L)	LPLF1 (bg)	-0.00003891	-34			17	0.05
Selenium (mg/L)	LPLF2	0	-77			38	0.05
Selenium (mg/L)	LPLF3	0	-128			38	0.05
Selenium (mg/L)	LPLF5 (bg)	0	-38			16	0.05
Selenium (mg/L)	LPLF8	0	-14			27	0.05
Selenium (mg/L)	UnderDrain	-0.0008172	-30	-37		14	0.05
Selenium (mg/L)	Leachate	-0.08329	-9	-15		7	0.05
Sodium (mg/L)	LPLF1 (bg)	52.35	35		No	17	0.05
Sodium (mg/L)	LPLF2	-4.73	-146			38	0.05
Sodium (mg/L)	LPLF3	-3.596	-86			38	0.05
Sodium (mg/L)	LPLF4 (bg)	9.635	322		Yes	38	0.05
Sodium (mg/L)	LPLF5 (bg)	-18.39	-44			16	0.05
Sodium (mg/L)	LPLF8	8.747	29	96	No	27	0.05

Appendix C - Mann-Kendall Trend Results via Sanitas

Constituent Name	Well	Slope	Mann-Kendall	Critical Value	Trend	N	Alpha
Sodium (mg/L)	UnderDrain	39.05	27	37	No	14	0.05
Sodium (mg/L)	Leachate	-692.3	-15	-15		7	0.05
Specific Conductance (uS/cm)	LPLF1 (bg)	312.5	74		Yes	17	0.05
Specific Conductance (uS/cm)	LPLF2	-21.67	-43	-158	No	38	0.05
Specific Conductance (uS/cm)	LPLF3	29.99	126	158	No	38	0.05
Specific Conductance (uS/cm)	LPLF4 (bg)	41.54	283	158	Yes	38	0.05
Specific Conductance (uS/cm)	LPLF5 (bg)	839.9	34	45	No	16	0.05
Specific Conductance (uS/cm)	LPLF8	-352.3	-112	-96	Yes	27	0.05
Specific Conductance (uS/cm)	UnderDrain	523.2	17	37	No	14	0.05
Specific Conductance (uS/cm)	Leachate	-3844	-11	-15	No	7	0.05
Sulfate (mg/L)	LPLF1 (bg)	327.7	95	49	Yes	17	0.05
Sulfate (mg/L)	LPLF2	-41.91	-127	-158		38	0.05
Sulfate (mg/L)	LPLF3	-14.78	-164	-158	Yes	38	0.05
Sulfate (mg/L)	LPLF4 (bg)	2.92	170	158	Yes	38	0.05
Sulfate (mg/L)	LPLF5 (bg)	814.9	25	45	No	16	0.05
Sulfate (mg/L)	LPLF8	-262.6	-102		Yes	27	0.05
Sulfate (mg/L)	UnderDrain	-114.4	-7		No	14	0.05
Sulfate (mg/L)	Leachate	-1319	-7	-15	No	7	0.05
TDS (mg/L)	LPLF1 (bg)	127.5	26		No	17	0.05
TDS (mg/L)	LPLF2	0	-93	-158		38	0.05
TDS (mg/L)	LPLF3	15.63	95	158		38	0.05
TDS (mg/L)	LPLF4 (bg)	16.98	182		Yes	38	0.05
TDS (mg/L)	LPLF5 (bg)	1256	30		No	16	0.05
TDS (mg/L)	LPLF8	-217.7	-96	-96		27	0.05
TDS (mg/L)	UnderDrain	0	-5	-37	No	14	0.05
TDS (mg/L)	Leachate	-2317	-11	-15		7	0.05
Temperature (Deg C)	LPLF1 (bg)	-0.05852	-6	-49	No	17	0.05
Temperature (Deg C)	LPLF2	0.4184	179	158	Yes	38	0.05
Temperature (Deg C)	LPLF3	0.4011	199		Yes	38	0.05
Temperature (Deg C)	LPLF4 (bg)	0.4424	112			38	0.05
Temperature (Deg C)	LPLF5 (bg)	-0.3377	-13	-45	No	16	0.05
Temperature (Deg C)	LPLF8	0.1064	28	96	No	27	0.05
Temperature (Deg C)	UnderDrain	5.57	32	37	No	14	0.05
Temperature (Deg C)	Leachate	-23.95	-15	-15	No	7	0.05
TOC (mg/L)	LPLF1 (bg)	-0.6042	-35			17	0.05
TOC (mg/L)	LPLF2	-0.231	-177	-158		38	0.05
TOC (mg/L)	LPLF3	0.06959	48	158		38	0.05
TOC (mg/L)	LPLF4 (bg)	-0.07449	-59	-158	No	38	0.05
TOC (mg/L)	LPLF5 (bg)	-0.5681	-45	-45		16	0.05
TOC (mg/L)	LPLF8	-2.802	-192		Yes	27	
TOC (mg/L)	UnderDrain	-0.1807	-7			14	0.05
TOC (mg/L)	Leachate	-10.07	-11	-15		7	0.05
Zinc (mg/L)	LPLF1 (bg)	0.008115	40		Yes	13	0.05
Zinc (mg/L)	LPLF2	0	-102	-158		38	0.05
Zinc (mg/L)	LPLF4 (bg)	0	2			38	0.05
Zinc (mg/L)	LPLF5 (bg)	0.05275	_ 27		No	16	0.05
Zinc (mg/L)	LPLF8	-0.03681	-59	-96		27	0.05
Zinc (mg/L)	UnderDrain	-0.3333	-48		Yes	14	0.05
Zinc (mg/L)	Leachate	0.0000	-2			7	0.05
· (···g· –)		· ·	-	.0		•	

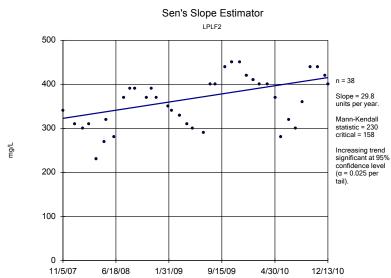
i. Trend results represent all possible well-constituent combinations where the number of detects was at least 10 percent or greater.


ii. Result is significant if trend value is "yes"; all cases with "no" are not statistically significant (i.e., not increasing or decreasing). If significant, a positive slope value represents an increasing trend, whereas a negative slope value represents a decreasing trend.

iii. Alpha set to 0.05 (or 95 percent confidence).

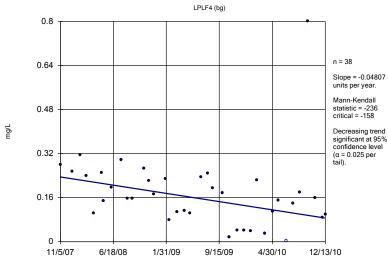
v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA Hollow symbols indicate censored values.

APPENDIX C

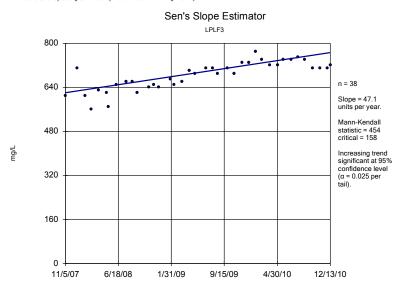


Constituent: Ammonia Analysis Run 2/10/2011 11:33 AM

Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_


v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA

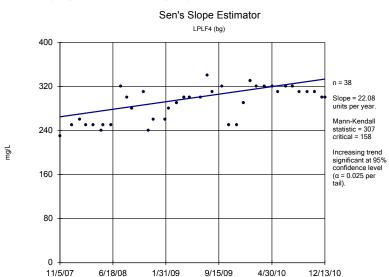
Constituent: Bicarbonate Analysis Run 2/10/2011 11:33 AM


Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

Sen's Slope Estimator

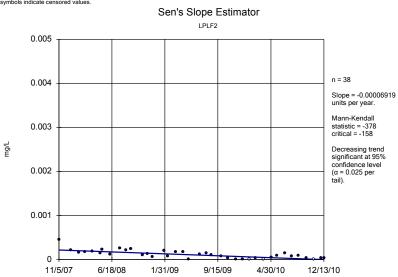
Constituent: Ammonia Analysis Run 2/10/2011 11:33 AM

Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_



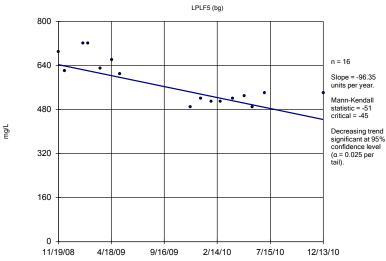
Constituent: Bicarbonate Analysis Run 2/10/2011 11:33 AM

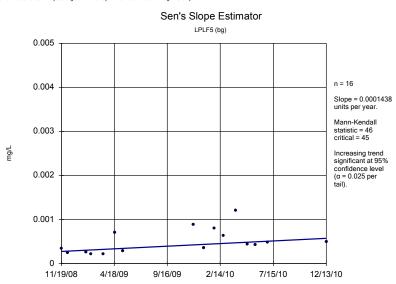
Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_


Page 1

APPENDIX C

Constituent: Bicarbonate Analysis Run 2/10/2011 11:33 AM
Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_




Constituent: Cadmium Analysis Run 2/10/2011 11:33 AM

Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

Sen's Slope Estimator

Constituent: Bicarbonate Analysis Run 2/10/2011 11:33 AM
Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

Constituent: Cadmium Analysis Run 2/10/2011 11:33 AM

Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

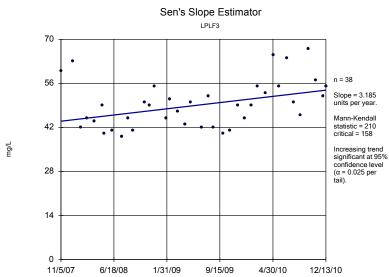
Page 2

Sen's Slope Estimator UnderDrain 0.005 n = 14 0.004 Slope = -0.001239 units per year. Mann-Kendall 0.003 statistic = -57 critical = -37 mg/L Decreasing trend significant at 95% confidence level 0.002 $(\alpha = 0.025 per$ tail). 0.001

Constituent: Cadmium Analysis Run 2/10/2011 11:33 AM
Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

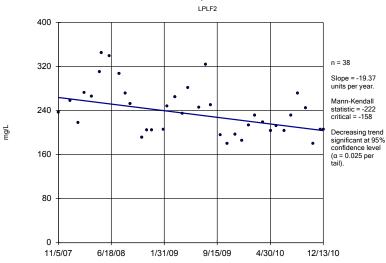
7/14/10

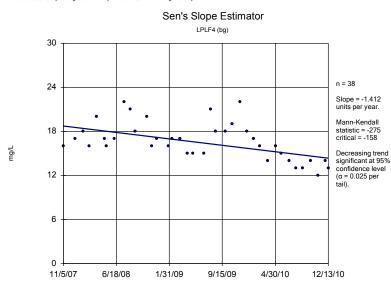
9/28/10


12/13/10

4/30/10

2/13/10

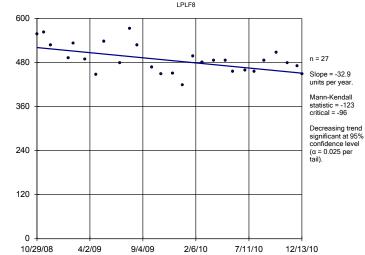

11/30/09


Constituent: Calcium Analysis Run 2/10/2011 11:33 AM

Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

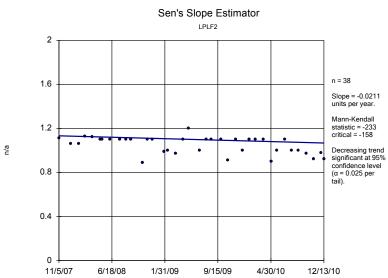
Sen's Slope Estimator

Constituent: Calcium Analysis Run 2/10/2011 11:33 AM
Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_



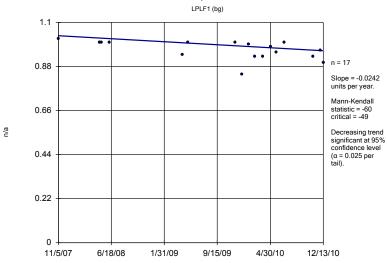
Constituent: Calcium Analysis Run 2/10/2011 11:33 AM

Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_


Page 3

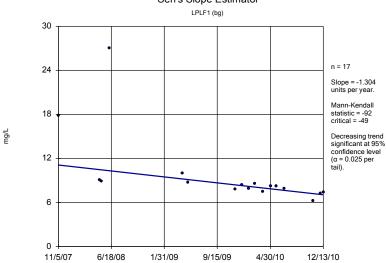
Sen's Slope Estimator

Constituent: Calcium Analysis Run 2/10/2011 11:33 AM

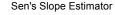

v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA

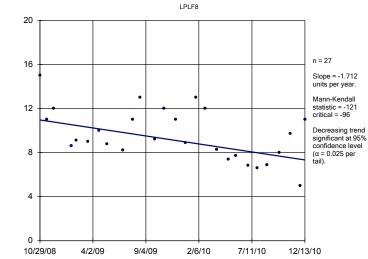
Constituent: Cation Balance Analysis Run 2/10/2011 11:34 AM

Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

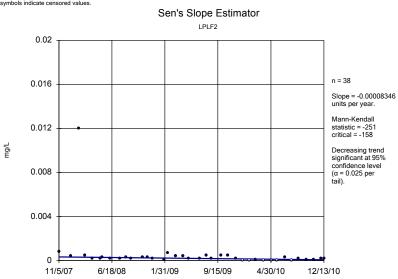

Sen's Slope Estimator

Constituent: Cation Balance Analysis Run 2/10/2011 11:34 AM
Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

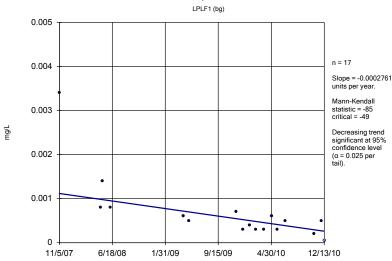

v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA

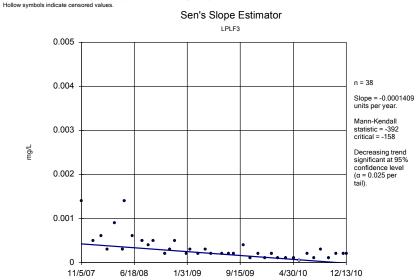

Sen's Slope Estimator

Constituent: Chloride Analysis Run 2/10/2011 11:34 AM


Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

Constituent: Chloride Analysis Run 2/10/2011 11:34 AM

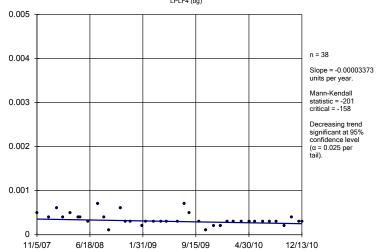

v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA Hollow symbols indicate censored values.


Constituent: Dis. Arsenic Analysis Run 2/10/2011 11:34 AM

Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

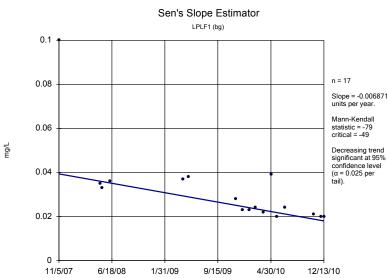
Sen's Slope Estimator

Constituent: Dis. Arsenic Analysis Run 2/10/2011 11:34 AM
Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

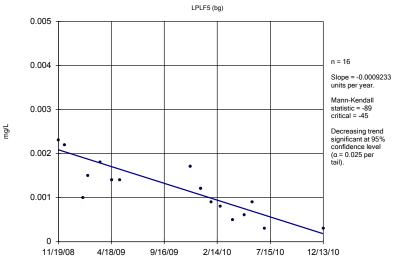


Constituent: Dis. Arsenic Analysis Run 2/10/2011 11:34 AM

Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_


Page 5

Sen's Slope Estimator LPLF4 (bg)


Constituent: Dis. Arsenic Analysis Run 2/10/2011 11:34 AM

v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA

Constituent: Dis. Barium Analysis Run 2/10/2011 11:34 AM

Sen's Slope Estimator

Constituent: Dis. Arsenic Analysis Run 2/10/2011 11:34 AM

Sen's Slope Estimator

v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA

11/5/07

6/18/08

LPLF2 0.2 n = 38 0.16 Slope = -0.006677 units per year. Mann-Kendall statistic = -200 critical = -158 0.12 mg/L Decreasing trend significant at 95% confidence level 0.08 $(\alpha = 0.025 per$ tail). 0.04

Constituent: Dis. Barium Analysis Run 2/10/2011 11:34 AM Page 6

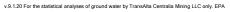
9/15/09

4/30/10

12/13/10

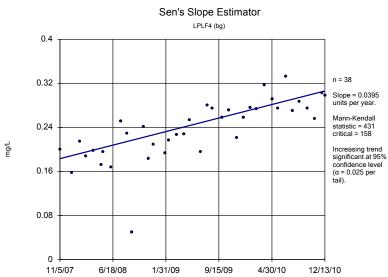
1/31/09

Sen's Slope Estimator LPLF5 (bg) 0.08 n = 16 0.064 Slope = -0.02484 units per year. Mann-Kendall 0.048 statistic = -101 critical = -45 mg/L Decreasing trend significant at 95% confidence level 0.032 $(\alpha = 0.025 per$ tail). 0.016


Constituent: Dis. Barium Analysis Run 2/10/2011 11:34 AM
Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

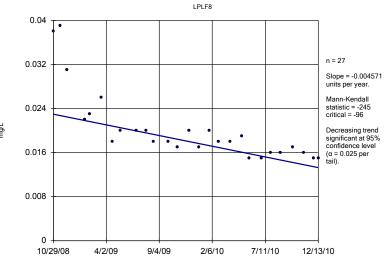
2/14/10

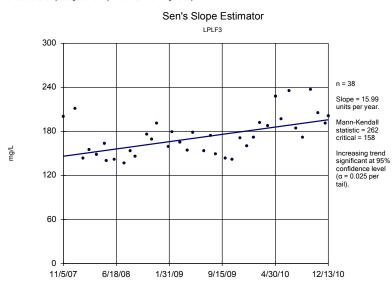
7/15/10


12/13/10

9/16/09

4/18/09

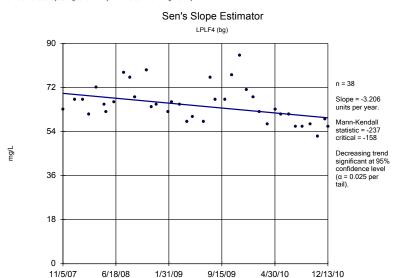

11/19/08


Constituent: Dis. Boron Analysis Run 2/10/2011 11:34 AM

Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

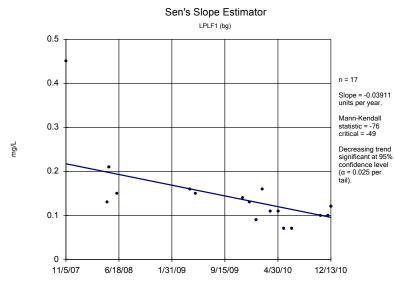
Sen's Slope Estimator

Constituent: Dis. Barium Analysis Run 2/10/2011 11:34 AM
Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_



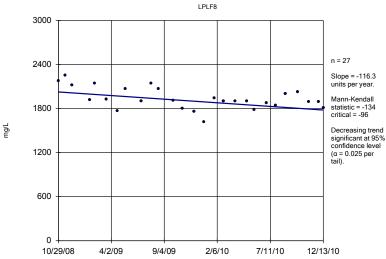
Constituent: Dis. Hardness Analysis Run 2/10/2011 11:34 AM

Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

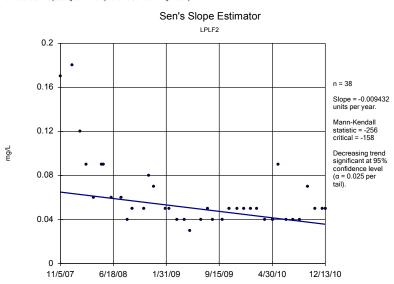

Page 7

APPENDIX C

Constituent: Dis. Hardness Analysis Run 2/10/2011 11:34 AM
Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_



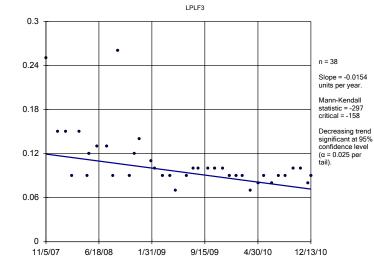
Constituent: Fluoride Analysis Run 2/10/2011 11:34 AM


Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

Sen's Slope Estimator

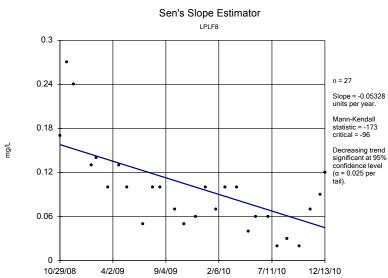
Constituent: Dis. Hardness Analysis Run 2/10/2011 11:34 AM

Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

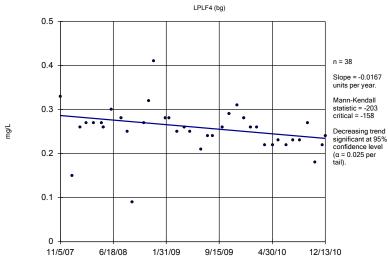


Constituent: Fluoride Analysis Run 2/10/2011 11:34 AM

Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_


Page 8

Sen's Slope Estimator


Constituent: Fluoride Analysis Run 2/10/2011 11:34 AM

v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA

Constituent: Fluoride Analysis Run 2/10/2011 11:34 AM

Sen's Slope Estimator

Constituent: Fluoride Analysis Run 2/10/2011 11:34 AM

v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA

11/5/07

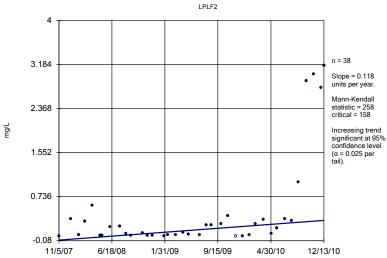
6/18/08

Sen's Slope Estimator LPLF1 (bg) 20 n = 17 15.6 Slope = 1.726 units per year. Mann-Kendall statistic = 78 critical = 49 mg/L Increasing trend significant at 95% confidence level 6.8 $(\alpha = 0.025 per$ tail). 2.4 • •

Constituent: Iron Analysis Run 2/10/2011 11:34 AM

9/15/09

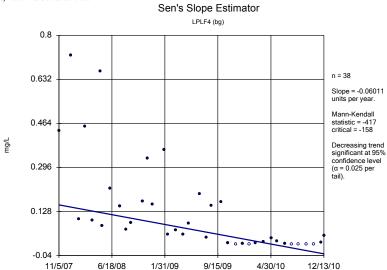
4/30/10


1/31/09

12/13/10

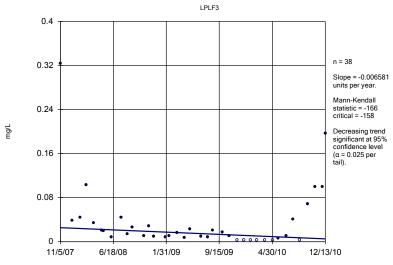
v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA Hollow symbols indicate censored values.

APPENDIX C

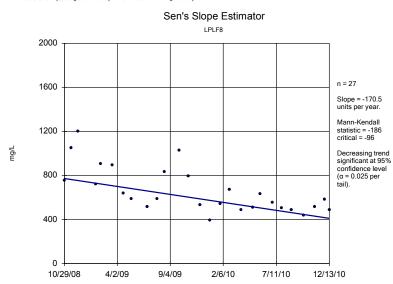


Constituent: Iron Analysis Run 2/10/2011 11:35 AM

Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

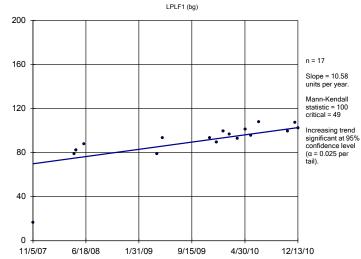

v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA Hollow symbols indicate censored values.

Constituent: Iron Analysis Run 2/10/2011 11:35 AM


Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

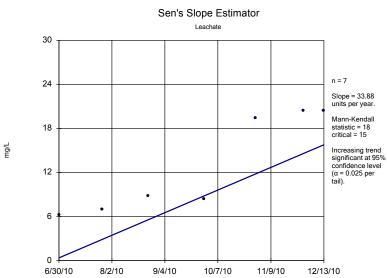
Constituent: Iron Analysis Run 2/10/2011 11:35 AM

Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

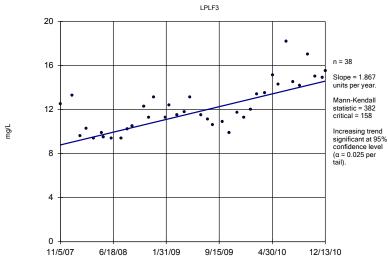


Constituent: Iron Analysis Run 2/10/2011 11:35 AM

Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_


Page 10

Sen's Slope Estimator



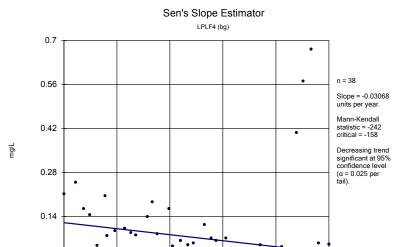
Constituent: Magnesium Analysis Run 2/10/2011 11:35 AM
Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA

Sen's Slope Estimator

Constituent: Magnesium Analysis Run 2/10/2011 11:35 AM
Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA


Sen's Slope Estimator LPLF2 n = 38 1.6 Slope = 0.1938 units per year. Mann-Kendall statistic = 187 critical = 158 1.2 mg/L Increasing trend significant at 95% confidence level 0.8 $(\alpha = 0.025 per$ 0.4 11/5/07 6/18/08 1/31/09 9/15/09 4/30/10 12/13/10

Constituent: Manganese Analysis Run 2/10/2011 11:35 AM

Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

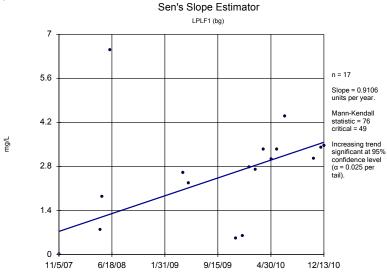
Page 11

APPENDIX C

Constituent: Manganese Analysis Run 2/10/2011 11:35 AM
Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

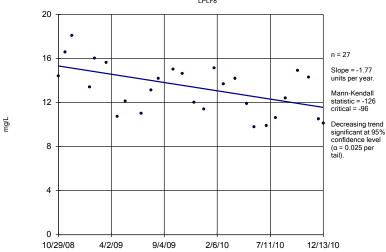
9/15/09

4/30/10

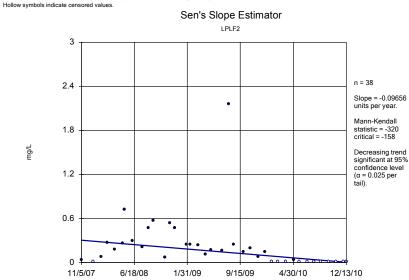

12/13/10

1/31/09

v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA Hollow symbols indicate censored values.


6/18/08

11/5/07

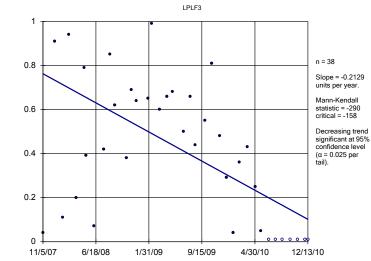

Constituent: Nitrate Analysis Run 2/10/2011 11:35 AM
Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

Sen's Slope Estimator LPLF8

Constituent: Manganese Analysis Run 2/10/2011 11:35 AM

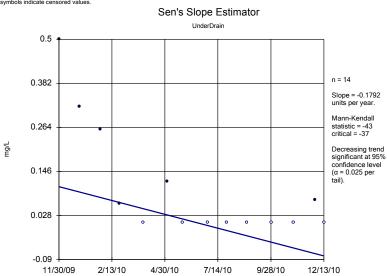
Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

Constituent: Nitrate Analysis Run 2/10/2011 11:35 AM

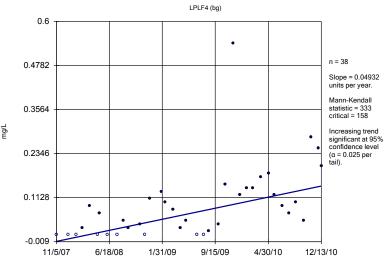

Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

Page 12

v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA Hollow symbols indicate censored values.

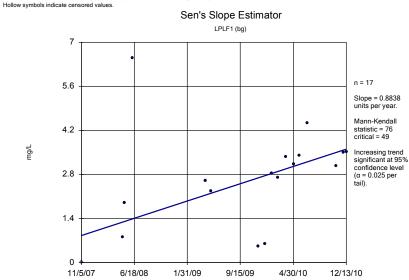

APPENDIX C

Constituent: Nitrate Analysis Run 2/10/2011 11:35 AM


v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA Hollow symbols indicate censored values.

Constituent: Nitrate Analysis Run 2/10/2011 11:35 AM

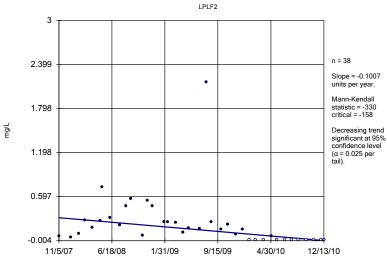
Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_


Sen's Slope Estimator

Constituent: Nitrate Analysis Run 2/10/2011 11:35 AM

Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

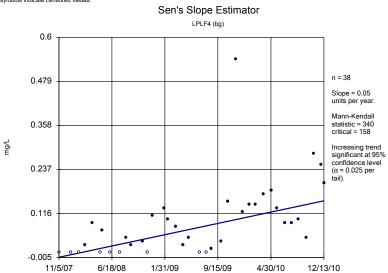
v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA


Constituent: Nitrate-Nitrite Analysis Run 2/10/2011 11:35 AM

Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

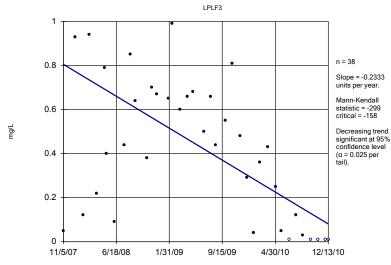
v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA Hollow symbols indicate censored values.

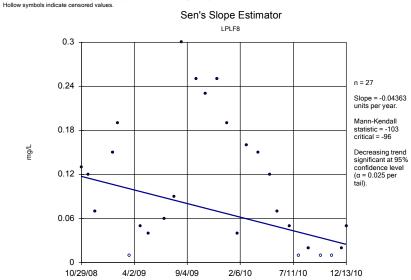
APPENDIX C



Constituent: Nitrate-Nitrite Analysis Run 2/10/2011 11:35 AM

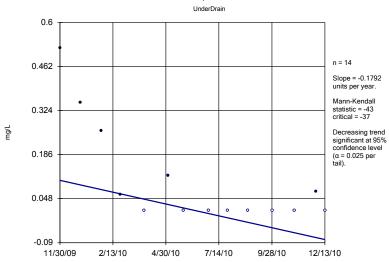
Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_


v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA Hollow symbols indicate censored values.

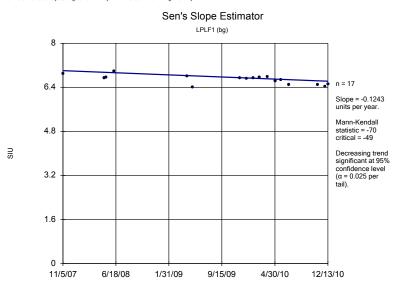

Constituent: Nitrate-Nitrite Analysis Run 2/10/2011 11:35 AM

Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

Sen's Slope Estimator

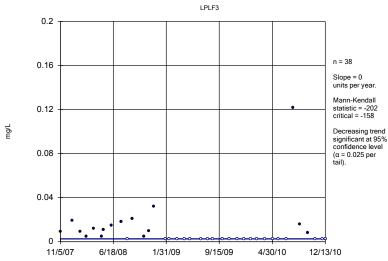


Constituent: Nitrate-Nitrite Analysis Run 2/10/2011 11:35 AM
Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

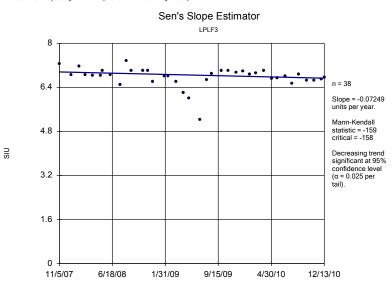

Constituent: Nitrate-Nitrite Analysis Run 2/10/2011 11:35 AM
Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

Constituent: Nitrate-Nitrite Analysis Run 2/10/2011 11:35 AM

v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA



Constituent: pH Analysis Run 2/10/2011 11:35 AM


v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA Hollow symbols indicate censored values.

Sen's Slope Estimator

APPENDIX C

Constituent: Nitrite Analysis Run 2/10/2011 11:35 AM

Constituent: pH Analysis Run 2/10/2011 11:35 AM Page 15

SID

APPENDIX C

Sen's Slope Estimator

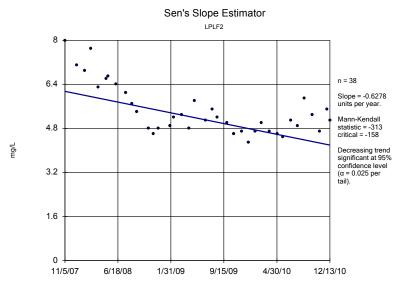
n = 38
Siope = 0.1629
units per year.

Mann-Kendall statistic = 207
critical = 158
Increasing trend
significant at 95%
confidence level
(\alpha = 0.025 per tail).

Constituent: pH Analysis Run 2/10/2011 11:35 AM

9/15/09

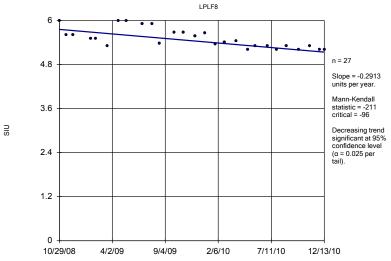
4/30/10


12/13/10

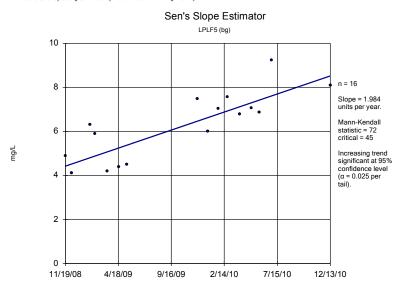
1/31/09

v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA

6/18/08

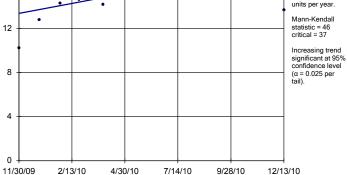

11/5/07

Constituent: Potassium Analysis Run 2/10/2011 11:35 AM


Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

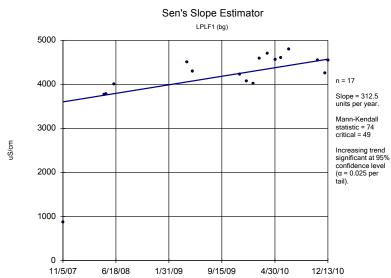
Sen's Slope Estimator


Constituent: pH Analysis Run 2/10/2011 11:35 AM


v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA

Constituent: Potassium Analysis Run 2/10/2011 11:35 AM

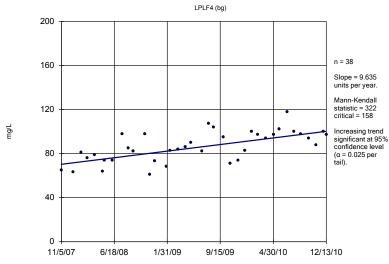
Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

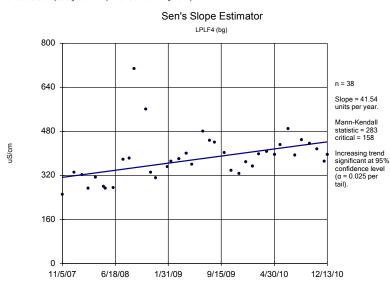

n = 14

Slope = 4.368

Constituent: Potassium Analysis Run 2/10/2011 11:35 AM

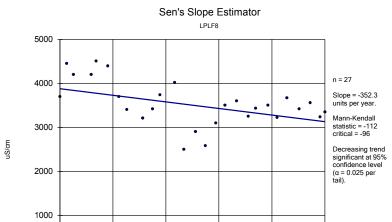
Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_


v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA


Constituent: Specific Conductance Analysis Run 2/10/2011 11:36 AM

Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

Sen's Slope Estimator



Constituent: Sodium Analysis Run 2/10/2011 11:35 AM
Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

Constituent: Specific Conductance Analysis Run 2/10/2011 11:36 AM

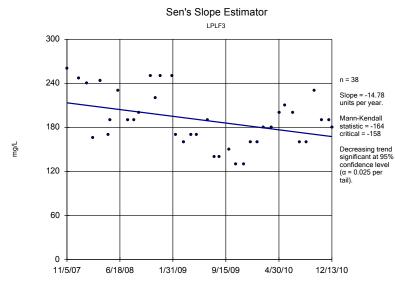
Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

Constituent: Specific Conductance Analysis Run 2/10/2011 11:36 AM

Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

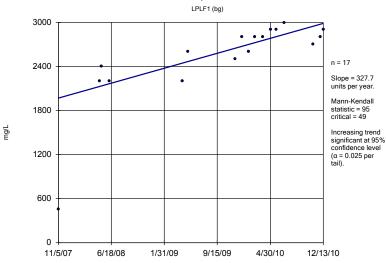
2/6/10

7/11/10

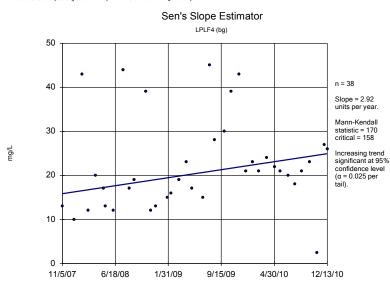

12/13/10

9/4/09

4/2/09


10/29/08

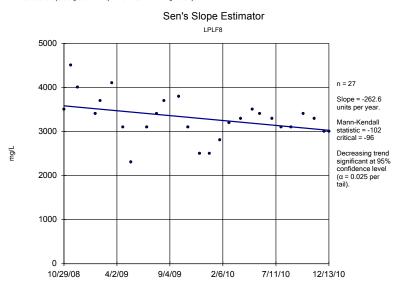
Constituent: Sulfate Analysis Run 2/10/2011 11:36 AM


Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

Sen's Slope Estimator

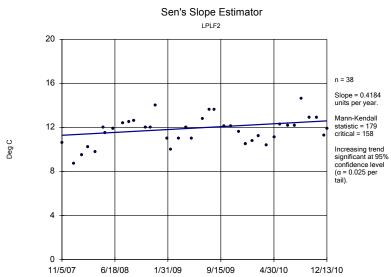
Constituent: Sulfate Analysis Run 2/10/2011 11:36 AM

Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

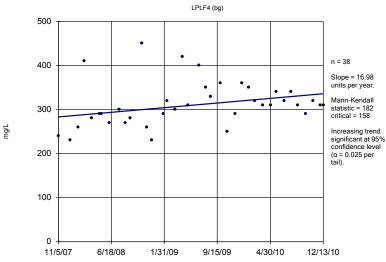


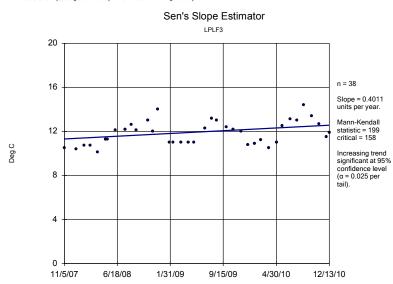
Constituent: Sulfate Analysis Run 2/10/2011 11:36 AM

Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_


Page 18

APPENDIX C


Constituent: Sulfate Analysis Run 2/10/2011 11:36 AM
Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_


Constituent: Temperature Analysis Run 2/10/2011 11:36 AM
Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

Sen's Slope Estimator

Constituent: TDS Analysis Run 2/10/2011 11:36 AM

Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

Constituent: Temperature Analysis Run 2/10/2011 11:36 AM

Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_