FINAL

2018 Alternative Source Demonstration for the Limited Purpose Landfill at the TransAlta Centralia Mine, near Centralia, Washington

Prepared for TransAlta Centralia Mining LLC

October 2018

999 W. Riverside Ave Suite 500 Spokane, WA 99201 (509) 747-2000

This document has been certified by a Professional Engineer and a Hydrogeologist licensed in the State of Washington and employed by CH2M HILL Engineers, Inc., a wholly owned subsidiary of Jacobs Engineering Group Inc. as of December 15, 2017.

Pat Krych, representing:

CH2M HILL Engineers, Inc. 999 W. Riverside Ave, Suite 500 Spokane, Washington 99201 Office Phone: 509-747-2000 Email: Pat.Krych@jacobs.com

Robert Martin, representing:

CH2M HILL Engineers, Inc. 999 W. Riverside Ave, Suite 500 Spokane, Washington 99201 Office Phone: 509-747-2000 Email: <u>Robert.Martin@jacobs.com</u>

Contents

Secti	on		Page
Acro	nyms an	d Abbreviations	v
1	Intro	duction	
	1.1	Purpose and Objectives	
2	Statis	tical Method and Monitoring Results	
	2.1	Statistical Evaluation Method	
	2.2	Monitoring Results	
	2.3	Summary of Statistically Significant Excee	edances2-1
3	Alter	native Source Demonstration	
	3.1	CCR Rule Regulatory Applicability	
	3.2	Alternative Source Demonstration	
		3.2.1 Site History	
		3.2.2 Background Monitoring Results .	
	3.3	Summary	
4	Refer	ences	

Appendixes

- A Field Sampling Forms
- B Laboratory Reports
- C WAC Program Fourth Quarter 2010 Groundwater Monitoring Report

Tables

- 1 Statistical Method for TransAlta Site CCR Program Limited Purpose Landfill
- 2 Monitoring Results and Comparison to Compliance Levels
- 3 WAC Program Background Data compared to CCR Program SSIs

Acronyms and Abbreviations

CCR	coal combustion residuals
CFR	Code of Federal Regulations
Ecology	Washington State Department of Ecology
LPLF	Limited Purpose Landfill
SSI	statistically significant increase
тсм	TransAlta Centralia Mine
TDS	Total dissolved solids
UPL	upper prediction limit
WAC	Washington Administrative Code

Introduction

This section summarizes this purpose and objectives of this report.

1.1 Purpose and Objectives

The purpose of this report is to provide supplemental documentation of retesting groundwater quality results that were performed in 2018 at the Limited Purpose Landfill (LPLF) at the TransAlta Centralia Mine (TCM) near Centralia, Washington. This report has been developed to provide Professional Engineer (PE) certification that the LPLF site remains in the detection phase status as a demonstration of natural variation in groundwater quality in accordance with Code of Federal Regulations (CFR) Part 257.94(e)(2), as follow-up to detection-phase groundwater compliance sampling completed on May 30, 2018, and retesting completed on August 9, 2018. Retesting was conducted in general accordance with the selected statistical method as documented in the *Coal Combustion Residual Statistical Method Certification for the Limited Purpose Landfill at the Centralia Mine near Centralia Washington* (CH2M, 2017a).

Pertinent background details on the coal combustion residuals (CCR) groundwater monitoring program are provided in the 2017 Annual Groundwater Monitoring Report for the Limited Purpose Landfill at the TransAlta Centralia Mine, near Centralia, Washington (CH2M, 2018a). The 2017 annual report has been posted to the publicly available website and not reiterated herein.

Statistical Method and Monitoring Results

This section summarizes the statistical method and monitoring results as related to this alternative source demonstration.

2.1 Statistical Evaluation Method

Table 1 summarizes the statistical method for all the wells and constituents as established from the *Coal Combustion Residual Statistical Method Certification for the Limited Purpose Landfill at the Centralia Mine near Centralia, Washington* (CH2M, 2017a), which is posted to the publicly available CCR website. As shown in Table 1 and as explained in the initial 2017 annual report (CH2M, 2018b), several of the constituents exhibited changing conditions (trends) during background period; as such, for selected cases the trends are accounted for in the calculation of background limits. The effective compliance limits for the monitoring results evaluated herein are presented in Section 2.2.

2.2 Monitoring Results

Table 2 presents the groundwater quality results and the respective compliance limits (pH requires both upper and lower limit) relative of the initial (spring) CCR semiannual detection monitoring event completed on May 30, 2018. Appendix A contains copies of the field sampling forms, and Appendix B contains a copy of the laboratory analytical results and supporting quality control documentation. Table 2 also shows the groundwater quality results from the retesting event, which was performed on four cases where the initial result exceeded the compliance limit and thus prompted retesting to determine if these were statistically significant increases (SSI) as described in Section 2.3.

2.3 Summary of Statistically Significant Exceedances

The following four cases prompted retesting because their original compliance result from the May 30, 2018, sampling event exceeded the respective upper prediction limit:

- Total dissolved solids (TDS) in well LPLF-2R
- Boron in well LPLF-2R
- Calcium in well LPLF-2R
- Sulfate in well LPLF-8

To determine if these were validated SSIs, retesting was completed by TransAlta on August 9, 2018. Appendix B includes copies of the laboratory report, and the data were validated by CH2M staff (project chemist) on September 6, 2018.

As shown in Table 2, retesting results confirmed that sulfate in LPLF-8 was within (below) background limit, however, TDS, boron, and calcium at LPLF-2R were confirmed to be SSIs. In response to these three confirmed SSIs, TCM is providing PE certification of an alternative source demonstration in Section 3 of this report as an option under CFR Part 257.94(e)(2) to keep the site in the detection-phase status in lieu of shifting into Assessment Monitoring status. This type of alternative source demonstration for LPLF-2R for several constituents has previously been completed as presented in the Addendum to the 2017 Annual Groundwater Monitoring Report for the Limited Purpose Landfill at the TransAlta Centralia Mine, near Centralia, Washington (CH2M, 2018b).

Alternative Source Demonstration

This section presents an alternative source demonstration in response to the confirmed SSIs in accordance with 40 CFR Part 257.94(e)(2).

3.1 CCR Rule Regulatory Applicability

In accordance with 40 CFR Part 257.94(e)(2), the site owner has the option to demonstrate that a source other than the regulated unit (ash waste in the LPLF) caused the SSI exceeding background levels before automatically shifting into the assessment phase requirements. The CCR regulations cite examples of alternative sources causing SSIs (for example, error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality).

The CCR regulations require alternative source demonstrations to be certified by a PE and completed within 90 days following determination of a valid SSI. The retesting results were validated on September 6, 2018, which is interpreted as the start of the 90-day period to complete the alternative source demonstration (or the need to shift into assessment monitoring if a successful demonstration is not made). Assuming September 6, 2018 as the effective start date for alternative source demonstration, a successful demonstration must be posted to the publicly available website no later than December 5, 2018. This demonstration report will also be referenced or attached to the forthcoming 2018 annual report, which is due January 31, 2019.

3.2 Alternative Source Demonstration

This section presents the technical basis and documentation to support that natural variation in groundwater quality is the reason for the SSIs observed for several of the constituents in LPLF-2R at the LPLF site.

3.2.1 Site History

The hydrogeological setting of the LPLF is unique in that present-day subsurface conditions were constructed such that surface overburden soils (mine spoils) were excavated during active mining operations in 2006 to expose coal seams within the relatively fine-grained Skookumchuck formation. As part of reclamation efforts following coal mining activities, the mine spoils were backfilled into a pit that forms the present-day footprint of the LPLF. Recharge via precipitation created a zone of saturation within the mine spoils immediately overlying the fine-grained Skookumchuck formation, which is the target groundwater monitoring zone as described in the *Coal Combustion Residual Groundwater Monitoring System Certification for the Limited Purpose Landfill at the Centralia Mine Site near Centralia, Washington* (CH2M, 2017b). The mine spoils are generally characterized as light tan to brown silty loam to silty clay with sand lenses; the underlying Skookumchuck is characterized as a sequence of siltstones, claystones, coal seams, and occasional carbonaceous shales. The stratigraphic sequence beneath the center of the LPLF consists of approximately 80 feet of mine spoils, underlain by relatively thick sequence of fine-grained Skookumchuck, estimated at over 500 feet thick in the area.

The mine spoils were generated by removal of coal seam interburdens and placed back into the mined pit. The interburden comprised silt and claystones with stringers of sub-economical coal stringers. The backfill placement resulted in a highly heterogeneous spoil of pulverized silt and claystone as discrete and localized coal and pyritic debris mixed laterally and vertically. These gravel to cobble sized materials can be acid forming and generate localized suppressed pH in the otherwise alkaline silt and clay spoils,

and secondary mobilization of calcium, sulfate and other constituents, subsequently increasing TDS in groundwater.

The presence of acid-forming materials in the spoils can result in elevated TDS and associated dissolved constituents in groundwater with localized increases closer to the material. As groundwater fluctuates, this can either submerge previously unsaturated material or expose saturated material to aerobic conditions in the unsaturated zone. The vertical heterogeneity of these materials results in groundwater conditions that can be highly variable for constituents susceptible to mobilization under suppressed pH conditions within localized areas, within a specific monitoring location.

Prior to the CCR regulations that were enacted in April 2015, TCM characterized the hydrogeological conditions for the LPLF as documented in Section 2 of *TransAlta Centralia Mining LLC, Limited Purpose Landfill Solid Waste Permit Application*, dated October 2008 (CH2M, 2008). To satisfy Chapter 173-350-500 (*Limited Purpose Landfill*) Washington Administrative Code (WAC) regulations, TCM initiated background monitoring prior to waste placement from 2007 to present, as described in the Washington State Department of Ecology (Ecology) and Lewis County Environmental Health District-approved *Groundwater Monitoring Plan for TransAlta Centralia Mining LLC Limited Purpose Landfill, Amendment 1, July 2011* (CH2M, 2011a). Since 2010, TCM has prepared quarterly and annual groundwater monitoring *– Data Analysis, Notification, and Reporting*. To date, the WAC program remains under detection-phase monitoring status. The existing WAC data collected from 2007 to 2009 pre-date waste placement into the LPLF and are used to document the heterogenous nature of background conditions. The data are presented in the Section 3.2.2 in support of the alternative source demonstration for the CCR program.

3.2.2 Background Monitoring Results

Appendix C is a copy of the *TransAlta Centralia Mining Fourth Quarter 2010 Groundwater Monitoring Report* (CH2M, 2011b). This report is specific to the WAC program, and includes descriptive statistics (via Appendix B of this report) collected during the period from 2007 to 2009, which represents site conditions of the mine spoils prior to when wastes were placed into the LPLF (effectively considered as background conditions). The WAC program included data for the same CCR constituents in question to support this alternative source demonstration.

Table 3 summarizes the background data obtained from 2007 to 2009 via WAC program for boron, calcium and TDS, which are the three constituents that are considered SSIs under the CCR program as described in Section 2. The highlighted values (also shown in bold font) illustrate WAC data for LPLF background data that are relatively higher concentrations for boron, calcium and TDS in comparison to the CCR program values at LPLF-2R, which were considered valid SSIs. This comparative analysis to background conditions demonstrates (1) substantial spatial variability and heterogeneity in these constituents of interest, and (2) that the CCR values that were identified as SSIs are actually within the demonstrated range of natural variation in groundwater quality during the WAC background period.

In response to the onset of CCR Rule in April 2015, TCM installed monitoring wells, initiated the detection-monitoring program, and completed the eight required background monitoring events to establish background conditions and to select an appropriate statistical method by the October 17, 2017 deadline. The duration of when the CCR Rule was effective to initial reporting of detection monitoring results constrains the background monitoring period to approximately one full hydrological season. Although the (minimum) number of background monitoring events were satisfied per CCR Rule, it is inferred that the background monitoring period (limited to about 1 year) may not have fully captured the actual natural variation that might be expected to occur in a natural groundwater environment. The natural groundwater environment can vary from changes in annual precipitation (recharge) and related geochemical changes associated with residence time within the aquifer materials. Background

monitoring events conducted over several years or multiple hydrological cycles would more appropriately characterize the natural variability in groundwater, and yield more data to strengthen statistical power of detection monitoring analyses. Given these considerations, it is believed that the background limits for the CCR program have not fully captured the natural variation in groundwater quality at the LPLF site, and future such alternative source demonstrations may be expected.

As noted in the statistical method certification (CH2M, 2017a) and in accordance with Unified Guidance (EPA, 2009), it is recommended to update background conditions following four to eight sampling events because of the complex behavior of groundwater and the need for sufficiently large sample sizes. Using this principle with semiannual sampling as prescribed under the CCR program, the background values should be reviewed and updated using statistical analysis every 2 to 4 years, assuming no confirmed statistically significant increase is identified. In addition, if hydrogeologic conditions change, then background should be updated to match the latest conditions.

3.3 Summary

Key findings as provided in this alternative source demonstration report are summarized as follows:

- 2018 Monitoring and Retesting (as presented herein). Analysis of retesting results following the initial May 30, 2018 detection-phase sampling event confirmed that sulfate in LPLF-8 was within the background limit, however, boron, calcium, and TDS in LPLF-2R were confirmed SSIs based on the CCR program statistical method. Based on the results and analysis described in this report, however, these SSIs have been explained or qualified as unrelated to the LPLF waste materials as a result of natural variation in groundwater quality. These findings are consistent with a similar demonstration for the CCR program as presented in the Addendum to the 2017 Annual Groundwater Monitoring Report for the Limited Purpose Landfill at the TransAlta Centralia Mine, near Centralia, Washington (CH2M, 2018b).
- Status of CCR Monitoring Program. This report has been certified by a PE in accordance with the alternative source demonstration per 40 CFR Part 257.94(e)(2) to document that the SSIs identified in 2018 for boron, calcium, and TDS in LPLF-2R are the result of natural variation in groundwater quality and are not attributed to potential influence from the LPLF. The CCR program remains under the detection-phase monitoring status per 40 CFR 257.94, *Detection Monitoring Program*.

SECTION 4

References

CH2M HILL Engineers, Inc. (CH2M). 2008. *TransAlta Centralia Mining LLC, Limited Purpose Landfill Solid Waste Permit Application*. October.

CH2M HILL Engineers, Inc. (CH2M). 2011a. Groundwater Monitoring Plan for TransAlta Centralia Mining LLC Limited Purpose Landfill, Amendment 1, July 2011.

CH2M HILL Engineers, Inc. (CH2M). 2011b. *TransAlta Centralia Mining Fourth Quarter 2010 Groundwater Monitoring Report.*

CH2M HILL Engineers, Inc. (CH2M). 2017a. Coal Combustion Residual Statistical Method Certification for the Limited Purpose Landfill at the Centralia Mine near Centralia, Washington.

CH2M HILL Engineers, Inc. (CH2M). 2017b. Coal Combustion Residual Groundwater Monitoring System Certification for the Limited Purpose Landfill at the Centralia Mine Site near Centralia, Washington.

CH2M HILL Engineers, Inc. (CH2M). 2018a. 2017 Annual Groundwater Monitoring Report for the Limited Purpose Landfill at the TransAlta Centralia Mine near Centralia, Washington.

CH2M HILL Engineers, Inc. (CH2M). 2018b. Addendum to the 2017 Annual Groundwater Monitoring Report for the Limited Purpose Landfill at the TransAlta Centralia Mine near Centralia, Washington.

U.S. Environmental Protection Agency (EPA). 2009. Unified Guidance: Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities.

U.S. Environmental Protection Agency (EPA). 2015. *Federal Register, 40 CFR § 257 and 261, Hazardous and Solid Waste Management System, Disposal of Coal Combustion Residuals from Electric Utilities, Final Rule, Vol. 80 No. 74, dated Friday, April 17, 2015.*

Washington Administrative Code (WAC). Chapter 173-350, Solid Waste Handling Standards.

Tables

Table 1. Statistical Method for TransAlta Site CCR Program Limited Purpose Landfill

2018 Alternative Source Demonstration for CCR Detection Monitoring Program

				Trending Calculated UCI	. (if needed) = { Interc	ept + [Slope* Time(d	ays)] + Residual }		Lower Prediction Limit	Upper Prediction Limit
Well	Constituent	Units	Method	Trend Removal	Intercept	Slope	Residual	K-Value	(LPL)	(UPL)
LPLF-2R	Boron	mg/L	Parametric UPL	Yes	0.3617368	-0.0001758	0.0181	2.4		Calculated
LPLF-2R	Calcium	mg/L	Parametric UPL	Yes	495.19	-0.2273	36.37	2.4		Calculated
LPLF-2R	Chloride	mg/L	Parametric UPL	No				2.4		9.77
LPLF-2R	Fluoride	mg/L	DQR	No						DQR
LPLF-2R	рН	pH units	Parametric UPL	No				2.79	6.08	6.86
LPLF-2R	Sulfate	mg/L	Parametric UPL	No				2.4		2010
LPLF-2R	TDS	mg/L	Non-Parametric UPL	Yes	3718.14	-0.9717	35	2.4		Calculated
LPLF-7R	Boron	mg/L	Parametric UPL	No				2.4		0.427
LPLF-7R	Calcium	mg/L	Parametric UPL	No				2.4		223
LPLF-7R	Chloride	mg/L	Parametric UPL	No				2.4		7.94
LPLF-7R	Fluoride	mg/L	DQR	No						DQR
LPLF-7R	рН	pH units	Parametric UPL	No				2.79	6.06	6.98
LPLF-7R	Sulfate	mg/L	Parametric UPL	Yes	718	3.197	170.01	2.4		Calculated
LPLF-7R	TDS	mg/L	Parametric UPL	Yes	1560	4.448	278.43	2.4		Calculated
LPLF-8	Boron	mg/L	Parametric UPL	No				2.4		0.988
LPLF-8	Calcium	mg/L	Parametric UPL	Yes	363.94	0.07846	33.96	2.4		Calculated
LPLF-8	Chloride	mg/L	Parametric UPL	No				2.4		7.39
LPLF-8	Fluoride	mg/L	DQR	No						DQR
LPLF-8	рН	pH units	Parametric UPL	No				2.79	5.61	6.36
LPLF-8	Sulfate	mg/L	Parametric UPL	Yes	1989.33	2.482	123.75	2.4		Calculated
LPLF-8	TDS	mg/L	Parametric UPL	Yes	3180.93	3.161	71.7	2.4		Calculated

Notes:

TIME (days) is the period from Nov. 14, 2016 to time of compliance event.

Compliance values fixed for upper and lower limits (LPL, and UPL); if listed as 'calculated', complinace limit requires calculation based on time of sampling event

See Table 2 for compliance limits and comparison to compliance values.

DQR = Double Quantification Rule.

mg/L = milligram per Liter

Table 2. Monitoring Results Compared to Compliance Levels

2018 Alternative Source Demonstration for CCR Detection Monitoring Program

				Trend Removal	Lower Prediction Limits	Fixed Upper Prediction Limits	Calculated Upper Prediction Limit for 5/30/18 Event	Initial Compliance Values from	Calculated Upper Prediction Limit for 8/9/18 ReTest Event	Compliance ReTest Results from 8/9/18 Event	Confirmed SS
Well	Constituent	Units	Method	Needed	(LPL)	(UPL)	(UPL)	5/30/18 Event	(if needed)	(if needed)	(yes/no)
LPLF-2R	Boron	mg/L	Parametric UPL	Yes		Calculated	0.281	[0.351]	0.269	0.325*	Yes
LPLF-2R	Calcium	mg/L	Parametric UPL	Yes		Calculated	404	[499]	388	463*	Yes
LPLF-2R	Chloride	mg/L	Parametric UPL	No		9.77		8.3	NA	NA	No
LPLF-2R	Fluoride	mg/L	DQR	No		DQR		ND	NA	NA	No
LPLF-2R	рН	pH units	Parametric UPL	No	6.08	6.86		6.6	NA	NA	No
LPLF-2R	Sulfate	mg/L	Parametric UPL	No		2010		1,880	NA	NA	No
LPLF-2R	TDS	mg/L	Non-Parametric UPL	Yes		Calculated	3,207	[3,490]	3,138	3,480*	Yes
LPLF-7R	Boron	mg/L	Parametric UPL	No		0.427		0.320	NA	NA	No
LPLF-7R	Calcium	mg/L	Parametric UPL	No		223		205	NA	NA	No
LPLF-7R	Chloride	mg/L	Parametric UPL	No		7.94		7.5	NA	NA	No
LPLF-7R	Fluoride	mg/L	DQR	No		DQR		ND	NA	NA	No
LPLF-7R	рН	pH units	Parametric UPL	No	6.06	6.98		6.57	NA	NA	No
LPLF-7R	Sulfate	mg/L	Parametric UPL	Yes		Calculated	2,685	1,510	NA	NA	No
LPLF-7R	TDS	mg/L	Parametric UPL	Yes		Calculated	4,338	2,260	NA	NA	No
LPLF-8	Boron	mg/L	Parametric UPL	No		0.988		0.936	NA	NA	No
LPLF-8	Calcium	mg/L	Parametric UPL	Yes		Calculated	442	430	NA	NA	No
LPLF-8	Chloride	mg/L	Parametric UPL	No		7.39		7.2	NA	NA	No
LPLF-8	Fluoride	mg/L	DQR	No		DQR		ND	NA	NA	No
LPLF-8	рН	pH units	Parametric UPL	No	5.61	6.36		6.15	NA	NA	No
LPLF-8	Sulfate	mg/L	Parametric UPL	Yes		Calculated	3,508	[3,670]	3,684	2,520	No
LPLF-8	TDS	mg/L	Parametric UPL	Yes		Calculated	5,029	3,540	NA	NA	No

Notes:

Bold-font with brackets (i.e., [value]) indicated cases where 5/30/18 compliance values exceeded upper prediction limit; these four cases required retesting.

Bold-font with asterisk (*) indicate cases which are statistically significant; these cases require explanation or alternative source demonstration as presented herein.

DQR = Double Quantification Rule

mg/L = milligram per Liter

NA = not applicable (prediction limit and/or retesting not required for listed cases).

UPL = upper prediction limit

SI _____ _____ _____ _____ _____ _____ ____ _____ _____ _____ _____

Table 3. WAC Program Background Data Compared to CCR Program SSIs

2018 Alternative Source Demonstration for CCR Detection Monitoring Program

	CCP Drogram										
Constituent	Constituent Well Observations Mean Minimum Maximum										
	LPLF1 (bg)	15	0.820	0.665	0.982						
	LPLF2	36	0.171	0.134	0.281						
	LPLF3	36	0.273	0.151	0.870						
Dis. Boron (mg/L)	LPLF4	36	0.233	0.050	0.333	0.325 mg/L					
	LPLF5 (bg)	15	0.202	0.153	0.307						
	LPLF8	25	0.717	0.448	1.120						
	UnderDrain	12	0.783	0.100	1.040						
	LPLF1 (bg)	15	363	79	444						
	LPLF2	36	242	180	345						
	LPLF3	36	49	39	67						
Calcium (mg/L)	LPLF4	36	17	12	22	463 mg/L					
	LPLF5 (bg)	15	426	126	865						
	LPLF8	25	492	419	573						
	UnderDrain	12	519	456	585						
	LPLF1 (bg)	15	4,207	1,400	5,000						
	LPLF2	36	1,280	970	1,900						
	LPLF3	36	866	710	1,100						
TDS (mg/L)	LPLF4	36	313	230	450	3,480 mg/L					
	LPLF5 (bg)	15	2,313	830	4,000						
	LPLF8	25	4,308	3,100	6,400						
	UnderDrain	12	3,400	2,900	3,700						

Notes:

Refer to maps in Appendix C for the WAC well locations; LPLF-1 and LPLF-5 are effectively upgradient of landfill.

WAC data shown represents background period prior to waste placement in LPLF, compared to CCR Program SSI in question.

Bold-font/highlighted cells show WAC background data which exceed CCR retest results to support the alternative source demonstration. mg/L = milligram per Liter

Appendix A Field Sampling Forms

			Jounuwau	errurging	j anu San	iping ro			
SITE:	TCM L	.PLF	Pr	oject Number:	C.	R		Well ID:	LPLFI
Field Team:		Bill Sch	eer					Date:	5/30/18
Weather/Ter	mp:	Sum	BREEZ	قار			Arrival	Time to Well:	12:15
Purge Metho	od: 🗆 E	Bladder	Peristaltic	🗆 Grab	🗹 Other: 🧕	BAILER	Initial DT	W (ft btc):	57.5
Pump Settin	g ⁵ :			Notes					
				Fiel	d Parameter	5			
Time ¹	DTW ²	Purge V (ml)	/ol. pH	Sp. Cond. (uS/cm)	DO (mg/L)	Temp (°C)	ORP (mV)	Turbidity (NTU)	Note color, odor, etc.
	Begin Pu	mping							
			6.46	3171	1.65	126		110.5	
				_					
1								. N	
				-					
Stabilization									
Criteria ³		•	± 0.1 units	± 3%	± 0.3 mg/L		± 10 mV	± 10%*	
³ Stabilization achi ⁴ For turbidity road	meters in cons eved after 3 su ioos > 10 NTU	stent 3-5 minute in ccessive readings	for Low-Flow method; arget purge rate is 0.1	nethod minimum parameter : 0.5 L/min (0.03 - 0.1	* DTW: Total draw subset: pH, sp. cond	lown should not ex ., and turbidity or D	Ceed 0.33 ft for Lov	w-Flow method	
Sample ID:	057	Solution	D - (PIF)	1	io gavnini)		5	Sample Time:	17:20
Analysis:	Annendi	(III (boron, cal	cium chloride fluo	ride nH sulfate	and TDS)		- ^		1000
[Appendiz	c IV (total meta	ls, Radium 226, ar	nd Radium 228).	and (DO)				
C	Other, sp	becify							
QC SAMPLE	: 🗆	Field Dupli	cate 🗆 MS	S/MSD	EQ Rinsate B	lank	TOTAL PU	JRGED (ml):	
QC Sample II	D:						QC	Sample Time:	
Comments:	-								

SITE:	TCM LPL	F	Proj	ect Number:	a	R		Well ID:	LPUF2
Field Team:		Bill Scheer						Date:	5-30-18
Weather/Ter	np:	Sunt	LARD				Arrival 1	Time to Well:	13:35
Purge Metho	od: 🗌 Blad	der 🗆 F	Peristaltic	🗆 Grab	Other:		Initial DT	W (ft btc):	(11.9)
Pump Settin	g ⁵ :			Notes:	0			v	3 - 18 ⁻
				Fiel	d Parameter	S			
Time ¹	DTW ²	Purge Vol. (ml)	рН	Sp. Cond. (uS/cm)	DO (mg/L)	Temp (°C)	ORP (mV)	Turbidity (NTU)	Note color, odor, etc.
	Begin Pumpin	Q	-						
		$\overline{}$							
				1					
				1					
			1						
						$\overline{\}$			
							$\overline{\ }$		
							``		
								I	
Stabilization Criteria ³	•	1 .	± 0.1 units	± 3%	± 0.3 mg/L		± 10 mV	± 10% ⁴	
¹ Collect field para ³ Stabilization achi ⁴ For turbidity road	neters in consistent eved after 3 success	3-5 minute intervals sive readings for Lo	s for Low-Flow method; min	nod nimum parameter s	² DTW: Total draw subset: pH, sp. cond 2 col/min)	down should not ex I., and turbidity or D	ceed 0.33 ft for Lov O	v-Flow method	
Sample ID:	ngs > 10 MTOS	rom-liom raider b	urge rate is 0.1 - 0.	5 L/IIMI (0.05 - 0.1	o gavniin)		ç	Sample Time:	
Analysis		haran aalalum	oblacida fluoria	la nU auffata	and TDC)			ampie rine.	
Analysis:	Appendix III (total metals, Ra	dium 226, and	Radium 228).	and TDS)				
[Other, specif	у		·					
QC SAMPLE	: 🗆 Fie	eld Duplicate		ISD 🗆	EQ Rinsate E	Blank	TOTAL PL	JRGED (ml):	
QC Sample II	D:		25				QC	Sample Time:	
Comments:							1.02		

Groundwater	Purging	and	Sampling	Form
-------------	---------	-----	----------	------

SITE:	TCM LPL	.F	Proj	iect Number:	CCI	2	_	Well ID:	LPLF2R
Field Team:	3	Bill Scheer					_	Date:	5-30-1B
Weather/Te	тр: <i>С</i>	oun d	+ WARA	~			Arrival ⁻	Time to Well:	13:20
Purge Metho	od: 🗌 Blade	der 🖾 F	Peristaltic	🗌 Grab	Other:		Initial DT	W (ft btc):	(3.11)
Pump Settin	g ⁵ : 125	ml/ Niv		Notes:					1
				Field	d Parameter	S			
Time ¹	DTW ²	Purge Vol. (ml)	рН	Sp. Cond. (uS/cm)	DO (mg/L)	Temp (°C)	ORP (mV)	Turbidity (NTU)	Note color, odor, etc.
5	Begin Pumpin	g		(,	(
10	(3.19)	1250	6.14	3844	38:21	14.9	24.2	61	
15	(3.23)	1875	6.13	3820	154	15.1	24.4	5.9	
20	(3.27)	2500	6.13	3635	,48	15.1	24.4	1.3	
								6.2	
	-								
								1	
Stabilization Criteria ³	•		± 0.1 units	± 3%	± 0.3 mg/L		± 10 mV	± 10% ⁴	
¹ Collect field para ³ Stabilization achi ⁴ For turbidity read	meters in consistent eved after 3 success lings > 10 NTUs	3-5 minute interval sive readings for Lo	s for Low-Flow met w-Flow method; mi purge rate is 0.1 - 0	hod nimum parameter s .5 L/min (0.03 - 0.13	² DTW: Total draw ubset: pH, sp. cond 3 gal/min)	down should not e I., and turbidity or I	xceed 0.33 ft for Lov	w-Flow method	
Sample ID:	053	018-001	R-LPLF2	R	gammy		ę	Sample Time:	13:40
Analysis:	Appendix III (boron, calcium,	chloride, fluorid	de, pH, sulfate, a	and TDS)		_ /		
ĺ	Appendix IV ((total metals, Ra	adium 226, and	Radium 228).					
QC SAMPLE	: 🗆 Fie	eld Duplicate	1¢⊈ MS/I	MSD 🗆	EQ Rinsate E	Blank	TOTAL PL	JRGED (ml):	2500
QC Sample I	D: <u>c</u>	53018-0	a-lpli	ZR			QC	Sample Time:	SALE
Comments:	-			•					

SITE:	TCM LPI	_F	Proj	ect Number:	Le	R		Well ID:	LPLF 3
Field Team:		Bill Scheer				'n		Date:	5-30-18
Weather/Ter	mp: 5	un t	HARA	$\overline{\lambda}$			Arrival 1	Time to Well:	13:25
Purge Metho	od: 🗆 Blad	der 🗆 F	Peristaltic	🗆 Grab	□ Other:		Initial DT	W (ft btc):	(#19)
Pump Settin	g ⁵ :			Notes					(7.53)
				Fiel	d Parameter	S			
Time ¹	DTW ²	Purge Vol. (ml)	рН	Sp. Cond. (uS/cm)	DO (mg/L)	Temp (°C)	ORP (mV)	Turbidity (NTU)	Note color, odor, etc.
\ \	Begin Pumpir	ng							L'anne Leong Baller I
	$\overline{}$								
	•		:						
				$\overline{\ }$					
					\square				
						<			
						\sim			
					10				
Stabilization									
Criteria ³		•	± 0.1 units	± 3%	± 0.3 mg/L		± 10 mV	± 10% ⁴	· · · · · ·
³ Stabilization achi	meters in consistent eved after 3 success	3-5 minute interval sive readings for Lo	s for Low-Flow meth w-Flow method; mir	nod nimum parameter	*DTW: Total draw subset: pH, sp. cond	down should not ex ., and turbidity or D	ceed 0.33 ft for Low O	v-Flow method	
For turbidity read	ings > 10 NTUs	* Low-flow target p	ourge rate is 0.1 - 0.	5 L/min (0.03 - 0.1	13 gal/min)		c	ample Time:	
Sample ID.	Annandia III.	(haran aalalum	oblacida fluarid	la all auffata	and TDC)			ampie rime.	
Analysis:	Appendix III	(total metals, Ra	adium 226, and	Radium 228).	and TDS)				
C	Other, specif	у	80						
QC SAMPLE	: 🗆 Fie	eld Duplicate		ASD 🗆	EQ Rinsate E	Blank	TOTAL PL	JRGED (ml):	
QC Sample II	D:						QC	Sample Time:	
Comments:									

SITE:	TCM LPI	_F	Proje	ect Number:	CCI	2		Well ID:	LPLF4
Field Team:		Bill Scheer						Date:	5-30-18
Weather/Ter	np:	Gon t	+WAR	m			Arrival T	ime to Well:	13:30
Purge Metho	od: 🔲 Blad	der 🗆 P	eristaltic	🗆 Grab	□ Other:		Initial DT	W (ft btc):	(3.57)
Pump Settin	g ⁵ :			Notes:					
				Field	d Parameters	5			
Time ¹	DTW ²	Purge Vol.	рН	Sp. Cond. (uS/cm)	DO (ma/L)	Temp (°C)	ORP (mV)	Turbidity (NTU)	Note color, odor, etc.
	Begin Pumpir	ng		(uoroniy	((-)	()	(
	\rightarrow						2		
				\searrow			-		
						/			
						$\overline{\}$			
							$\overline{}$		
							$ \rightarrow $		
Stabilization Criteria ³			± 0.1 units	± 3%	± 0.3 mg/L	•	± 10 mV	± 10% ⁴	
¹ Collect field para ³ Stabilization achi	meters in consistent	3-5 minute intervals	s for Low-Flow method: min	nod nod	² DTW: Total draw	down should not ex	ceed 0.33 ft for Low	-Flow method	
⁴ For turbidity read	lings > 10 NTUs	⁵ Low-flow target p	ourge rate is 0.1 - 0.	5 L/min (0.03 - 0.1	3 gal/min)				
Sample ID:							- 8	Sample Time:	
Analysis:	Appendix III	(boron, calcium,	chloride, fluoric	le, p <mark>H</mark> , sulfate,	and TDS)				
1	Appendix IV	(total metals, Ra	adium 226, and	Radium 228).					
		old Duplicate			FO Rineate F	Nank	TOTAL DI	IRGED (ml)	
	. ⊔гі n.	eiu Duplicate				ann		Samnla Timo	
Qu Sample I	U							oampie mine.	
comments:									

Field Team: Bill Scheer Weather/Temp: Subscreen Purge Method: □ Bladder Initial	Date: al Time to Well:	5-30-18
Weather/Temp: $\leq \sim \sim 4$ $\land A \sim A$ ArrivPurge Method: \Box Bladder \Box Peristaltic \Box Grab \Box Other:Initial	al Time to Well:	
Purge Method: Bladder Peristaltic Grab Other: Initial		14:00
	DTW (ft btc):	
Pump Setting 5 : 100 m / m Notes:		
Field Parameters		
Time ¹ DTW ² Purge Vol. (ml) pH Sp. Cond. (uS/cm) DO Temp ORP (mV) (ml) pH (uS/cm) (mg/L) (°C) (mV)	Turbidity (NTU)	Note color, odor, etc.
5 Begin Pumping		
# 6.63 2016 3.66 13.8	5.7	
		1
Stabilization Criteria ³ - ± 0.1 units ± 3% ± 0.3 mg/L - ± 10 m	IV ± 10% ⁴	
¹ Collect field parameters in consistent 3-5 minute intervals for Low-Flow method ² DTW: Total drawdown should not exceed 0.33 ft for ³ Stabilization achieved after 3 successive readings for Low-Flow method; minimum parameter subset: pH, sp. cond., and turbidity or DO ⁴ For turbidity readings > 10 NTUs ⁵ Low-flow target nume rate is 0.1 - 0.51 /min (0.03 - 0.13 pal/min)	or Low-Flow method	
Sample ID:	Sample Time	: 14:20
Analysis: Appendix III (boron, calcium, chloride, fluoride, pH, sulfate, and TDS)		
Appendix IV (total metals, Radium 226, and Radium 228). Other, specify		
QC SAMPLE : Field Duplicate MS/MSD EQ Rinsate Blank TOTA	L PURGED (ml)	:
QC Sample ID :	QC Sample Time	
Comments: Not	_	

Field Team: Date: 5 - 30 - 18 Weather/Temp:	Field Team: Bill Scheer Date: $5 - 30$ Weather/Temp: $5 - 4$ 60 1222 Purge Method: 46 60 1222 Purge Method: 46 60 1222 Purge Method: 46 1222 1222 Purge Method: 46 1222 1222 Purge Method: 150 111 12122 1222 Purge Method: 150 111 1212 1212 1212 Purge Method: 150 1111 11111 111111 1111111 $111111111111111111111111111111111111$	Well ID: LPLF 7R											
Weather/Temp:	Weather/Temp: $5 - 4 - 3 - 2 - 4 - 3 - 2 - 2 - 2 - 3 - 3 - 2 - 2 - 2 - 2$	-18											
Purge Method:	Purge Method: Bladder \square Peristaltic \square Grab \square Other: Initial DTW (ft btc): $(19,71)$ Pump Setting 5: 150 m m_{1m} Notes:	Weather/Temp: <u>S-~ & BRizzy</u> Arrival Time to Well: 12:20											
Pump Setting 5:	Pump Setting 5: 150 eV^{1} rue Notes: Field Parameters Time 1 DTW 2 Purge Vol. (ml) PH Sp. Cond. (us/cm) ORP (mV) Turbidity (NTU) Note color, c 5 Begin Pumping 10 (20.03) 1600 (4.7) 1282.0 1.33 15 (20.10) 2250 (6.04 2981 .90 14.6 136.7 1.2 20 (20.09 3 ∞ 0 6.04 2883 .91 III III IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Initial DTW (ft btc): (19,71)											
Field Parameters Time 1 DTW2 Prige Vol. (m) pH Sp. Cond. (u/s/m) DO (mg/L) Temp (mg/L) ORP (m) Turbidity Note color, odor, etc. 5 Bagin Pumping I (u/s/m) 1/2 I/2	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Pump Setting 5: 150 Min Notes:											
Time 1 DTW2 Purge Vol. (m) pH Sp. Cond. (us/cm) DO (mg/l) Temp (rs) ORP Turbidity (nvU) Note color, odar, etc. 5 Begin Pumping	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Field Parameters											
✓ Begin Pumping 10 (De vo3) 1500 (E.0.5) 2£73 :82-14:7 128-3 1.3 15 (Da 10) 2250 (E.0.4) 2981 .9.0 1/4:6 136.8 1.2 20 (Da 09) 3000 6.04 2983 .81 1/46 186.7 1.2 20 (Da 09) 3000 6.04 2883 .81 1/46 186.7 1.2 20 (Da 09) 3000 6.04 2883 .81 1/46 186.7 1.2 20 1 1 1 1 1 1 1 1 20 1 1 1 1 1 1 1 1 20 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	dor, etc.											
10 (D.0.03) 1560 6.05 24573 .822 14.7 1368 1.3 15 (D.0.0) 22.50 6.04 2381 .80 14.6 1368 1.2 70 (D.0.9) 3000 6.04 2883 ,31 14.6 1368 1.2 70 (D.0.9) 3000 6.04 2883 ,31 14.6 136.7 1.2 70 (D.0.9) 3000 6.04 2883 ,31 14.6 136.8 1.2 70 1.0 7 7 7 7 7 7 7 7 70 1.0 7 1.2 7 1.2 7 1.2 7 7 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 7 1.0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
15 (20.10) 22.50 6.04 2981 .9.0 14.6 136.8 1.2 20 (20.09) 3∞0 6.04 2983 .9.1 14.6 136.7 1.2 20 (20.09) 3∞0 6.04 2983 .9.1 14.6 136.7 1.2 20 1.2 1.2 1.2 1.2 1.2 1.2 20 1.2 1.2 1.2 1.2 1.2 20 1.2 1.2 1.2 1.2 1.2 20 1.2 1.2 1.2 1.2 1.2 20 1.2 1.2 1.2 1.2 1.2 21 1.2 1.2 1.2 1.2 1.2 21 1.2 1.2 1.2 1.2 1.2 1.2 21 1.2 1.2 1.2 1.2 1.2 1.2 1.2 21 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 <td< td=""><td>15 (2010) 2250 6.04 2981 .90 14.6 1368 1.2 20 (20.09) 3000 6.04 2883 .91 14.6 136.7 1.2 10 100 3000 6.04 2883 .91 14.6 136.7 1.2 10 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100</td><td></td></td<>	15 (2010) 2250 6.04 2981 .90 14.6 1368 1.2 20 (20.09) 3000 6.04 2883 .91 14.6 136.7 1.2 10 100 3000 6.04 2883 .91 14.6 136.7 1.2 10 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100												
20 (20.09) 3000 6.04 2883 ,31 14.6 186.7 1.2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20 (20.09 300 6.04 2883 .81 14.6 136.7 1.2												
Image:													
Image: Stabilization of the parameters in consistent 35 minute intervals for Low-Flow method *10 mV ± 10 mV <td< td=""><td></td><td></td></td<>													
Image: Stabilization of the constant 35 minute intervals for Low-Flow method Image: Stabilization of the constant 35 minute intervals for Low-Flow method Stabilization of the constant 35 minute intervals for Low-Flow method Image: Stabilization of the constant 35 minute intervals for Low-Flow method Stabilization of the constant 35 minute intervals for Low-Flow method Image: Stabilization of the constant 35 minute intervals for Low-Flow method Stabilization of the constant 35 minute intervals for Low-Flow method Image: Stabilization of the constant 35 minute intervals for Low-Flow method Stabilization of the constant 35 minute intervals for Low-Flow method Image: Stabilization of the constant 35 minute intervals for Low-Flow method Stabilization of the constant 35 minute intervals for Low-Flow method Image: Stabilization of the constant 35 minute intervals for Low-Flow method Stabilization of the constant 35 minute intervals for Low-Flow method Image: Stabilization of the constant 35 minute intervals for Low-Flow method minit (003 - 0.13 gainin) Sample ID: O S 30 1 (S - CCC - LP CF 7 R) Sample Time: [2:40 Analysis: Appendix IV (total metals, Radium 226, and Radium 228). Sample Time: [2:40 QC SAMPLE: M-Fleid Duplicate MS/MSD EQ Rinsate Blank TOTAL PURGED (m)); <u>Soco</u>													
Stabilization . ± 0.1 units ± 3% ± 0.3 mg/L . ± 10 mV ± 10% ⁴ Stabilization Stabilization Stabilization Stabilization .													
Image: Stabilization Criteria ³ Stabilization Criteria ³ Image: Stabilization Criteria ³ Stabilization Criteria ³ Image: Stabilization Criteria ³ Image: Stabilization Criteria ³ Image: Stabilization Criteria ³ Image: Stabilization Criteria ³ *Collect field parameters in consistent 35 minute intervals for Low-Flow method *2DTW: Total drawdown should not exceed 0.33 ft for Low-Flow method *2DTW: Total drawdown should not exceed 0.33 ft for Low-Flow method *Stabilization choride dref 3 successive readings for Low-Flow method *2DTW: Total drawdown should not exceed 0.33 ft for Low-Flow method *2DTW: Total drawdown should not exceed 0.33 ft for Low-Flow method *Collect field parameters in consistent 35 minute intervals for Low-Flow method *2DTW: Total drawdown should not exceed 0.33 ft for Low-Flow method *2DTW: Total drawdown should not exceed 0.33 ft for Low-Flow method *Collect field parameters in consistent 35 minute intervals for Low-Flow method *2DTW: Total drawdown should not exceed 0.33 ft for Low-Flow method *2DTW: Total drawdown should not exceed 0.33 ft for Low-Flow method *Got tarbidity readings > 10 NTUs *1 cow-flow target purge parale is 0.1 - 0.5													
Image: Stabilization Criteria Image: Stabilization consistent 3.5 minute intervels for Low-Flow method 1													
Image: Stabilization Criteria ³ <td< td=""><td></td><td></td></td<>													
Stabilization Criteria ³ • ± 0.1 units ± 3% ± 0.3 mg/L • ± 10 mV ± 10% ⁴ ¹ Collect field parameters in consistent 3.5 minute intervals for Low-Flow method ² DTW: Total drawdown should not exceed 0.33 ft for Low-Flow method ¹ Collect field parameters in consistent 3.5 minute intervals for Low-Flow method ² DTW: Total drawdown should not exceed 0.33 ft for Low-Flow method ¹ Collect field parameters in consistent 3.5 minute intervals for Low-Flow method ² DTW: Total drawdown should not exceed 0.33 ft for Low-Flow method ² Stabilization achieved after 3 successive readings for Low-Flow method, minimum parameter subset: pH, so; cond, and turbidity or DO ⁴ DTW: Total drawdown should not exceed 0.33 ft for Low-Flow method ³ Stabilization achieved after 3 successive readings for Low-Flow method, minimum parameter subset: pH, so; cond, and turbidity or DO ⁴ DTW: Total drawdown should not exceed 0.33 ft for Low-Flow method ³ Stabilization achieved after 3 successive readings for Low-Flow method, minimum parameter subset: pH, so; cond, and turbidity or DO ⁴ DTW: Total drawdown should not exceed 0.33 ft for Low-Flow method ³ Stabilization achieved after 3 successive readings / 10 NUs ⁵ Low-Flow method, minimum parameter subset: pH, so; cond, and turbidity or DO ⁴ DTW: Total drawdown should not exceed 0.33 ft for Low-Flow method Sample ID: © 5.30 1& 6 - CLR - LPLF 7.R Sample Time: [2: 40 Analysis: <td< td=""><td></td><td></td></td<>													
Stabilization Criteria ³ . ± 0.1 units ± 3% ± 0.3 mg/L . ± 10 mV ± 10% ⁴ ¹ Collect field parameters in consistent 3-5 minute intervals for Low-Flow method ² DTW: Total drawdown should not exceed 0.33 ft for Low-Flow method ³ DTW: Total drawdown should not exceed 0.33 ft for Low-Flow method ³ Stabilization achieved after 3 successive readings for Low-Flow method ² DTW: Total drawdown should not exceed 0.33 ft for Low-Flow method ³ Stabilization achieved after 3 successive readings for Low-Flow method ² DTW: Total drawdown should not exceed 0.33 ft for Low-Flow method ³ Stabilization achieved after 3 successive readings for Low-Flow method ² DTW: Total drawdown should not exceed 0.33 ft for Low-Flow method ⁴ For turbidity readings > 10 NTUs ⁵ Low-flow target purge rate is 0.1 - 0.5 Limin (0.03 - 0.13 gal/min) Sample Time: 12 : 40 Analysis: Appendix III (boron, calcium, chloride, fluoride, pH, sulfate, and TDS) Sample Time: 12 : 40 Analysis: Appendix IV (total metals, Radium 226, and Radium 228). Other, specify GC SAMPLE : MS/MSD EQ Rinsate Blank TOTAL PURGED (ml): 3cccc QC SAMPLE : Article MS/MSD EQ Rinsate Blank TOTAL PURGED (ml): 3cccc													
Stabilization Criteria ³ - ± 0.1 units ± 3% ± 0.3 mg/L - ± 10 mV ± 10% ⁴ ¹ Collect field parameters in consistent 35 minute intervals for Low-Flow method ² DTW: Total drawdown should not exceed 0.33 ft for Low-Flow method - ± 0.1 units ± 3% ± 0.3 mg/L - ± 10 mV ± 10% ⁴ - ¹ Collect field parameters in consistent 35 minute intervals for Low-Flow method ² DTW: Total drawdown should not exceed 0.33 ft for Low-Flow method - - ± 0.1 units ± 3% ± 0.3 mg/L - ± 10 mV ± 10% ⁴ - ¹ Collect field parameters in consistent 35 minute intervals for Low-Flow method, minimum parameter subset: pH, sp. cond., and turbidity or DO * - # - - = - <td< td=""><td></td><td></td></td<>													
Stabilization Criteria ³ . ± 0.1 units ± 3% ± 0.3 mg/L . ± 10 mV ± 10% ⁴ ¹ Collect field parameters in consistent 3-5 minute intervals for Low-Flow method ² DTW: Total drawdown should not exceed 0.33 ft for Low-Flow method . ± 0.1 units ± 3% ± 0.3 mg/L . ± 10 mV ± 10% ⁴ . ³ Stabilization achieved after 3 successive readings for Low-Flow method; minimum parameter subset: pH, sp. cond., and turbidity or DO ³ DTW: Total drawdown should not exceed 0.33 ft for Low-Flow method . ⁴ For turbidity readings > 10 NTUs ⁵ Low-flow target purge rate is 0.1 - 0.5 L/min (0.03 - 0.13 gal/min) Sample ID: O 5 30 18 - CUCR - LP LF 7R Sample Time: 12:40 Analysis: Appendix III (boron, calcium, chloride, fluoride, pH, sulfate, and TDS) Sample Time: 12:40 QC SAMPLE: Appendix IV (total metals, Radium 226, and Radium 228). . . . QC SAMPLE: Arield Duplicate MS/MSD EQ Rinsate Blank TOTAL PURGED (ml): 3odd													
Stabilization Criteria ³ . ± 0.1 units ± 3% ± 0.3 mg/L . ± 10 mV ± 10% ⁴ . ¹ Collect field parameters in consistent 3-5 minute intervals for Low-Flow method ² DTW: Total drawdown should not exceed 0.33 ft for Low-Flow method ³ DTW: Total drawdown should not exceed 0.33 ft for Low-Flow method ³ Stabilization achieved after 3 successive readings for Low-Flow method; minimum parameter subset: pH, sp. cond., and turbidity or DO * Sample 10: © 5 30 [8 - CCR - LPCF 7R] Sample Time: [2:40] Analysis: Appendix III (boron, calcium, chloride, fluoride, pH, sulfate, and TDS) Sample flue (total metals, Radium 226, and Radium 228). Other, specify													
Stabilization Criteria ³ - ± 0.1 units ± 3% ± 0.3 mg/L - ± 10 mV ± 10% ⁴ - ¹ Collect field parameters in consistent 3-5 minute intervals for Low-Flow method ² DTW: Total drawdown should not exceed 0.33 ft for Low-Flow method ³ Stabilization achieved after 3 successive readings for Low-Flow method; minimum parameter subset: pH, sp. cond., and turbidity or DO * * 10 mV ± 10% ⁴ - .													
¹ Collect field parameters in consistent 3.5 minute intervals for Low-Flow method ² DTW: Total drawdown should not exceed 0.33 ft for Low-Flow method ³ Stabilization achieved after 3 successive readings for Low-Flow method, minimum parameter subset: pH, sp. cond., and turbidity or DO ⁴ For turbidity readings > 10 NTUs ⁵ Low-flow method, minimum parameter subset: pH, sp. cond., and turbidity or DO ⁴ For turbidity readings > 10 NTUs ⁵ Low-flow target purge rate is 0.1 - 0.5 L/min (0.03 - 0.13 gal/min) Sample ID: Sample 7 Sample Time: 2? 40 Analysis: □ Appendix III (boron, calcium, chloride, fluoride, pH, sulfate, and TDS) Sample in Content is a stabilization achieved in the specify Sample ID: 20 Sample in Content is a stabilization achieved in the specify QC SAMPLE : A Field Duplicate MS/MSD EQ Rinsate Blank TOTAL PURGED (ml): 3000	Stabilization Criteria ³ - ± ± 10 mV ± 10% ⁴ -												
⁴ For turbidity readings > 10 NTUs ⁵ Low-flow target purge rate is 0.1 - 0.5 L/min (0.03 - 0.13 gal/min) Sample ID:	¹ Collect field parameters in consistent 3-5 minute intervals for Low-Flow method ³ Stabilization achieved after 3 successive readings for Low-Flow method; minimum parameter subset: pH, sp. cond., and turbidity or DO												
Sample ID: 0 5 30 [8 - 2010 - 0707 7K] Sample Time: 12.40 Analysis: Appendix III (boron, calcium, chloride, fluoride, pH, sulfate, and TDS) Appendix IV (total metals, Radium 226, and Radium 228). Other, specify 0 QC SAMPLE : AField Duplicate MS/MSD EQ Rinsate Blank TOTAL PURGED (ml): 3000	⁴ For turbidity readings > 10 NTUs ⁵ Low-flow target purge rate is 0.1 - 0.5 L/min (0.03 - 0.13 gal/min)												
Analysis: Appendix III (boron, calcium, chloride, tiluoride, pH, sulfate, and TDS) Appendix IV (total metals, Radium 226, and Radium 228). Other, specify QC SAMPLE : A Field Duplicate MS/MSD EQ Rinsate Blank TOTAL PURGED (ml):	Sample ID: $0530 [8 - CC] - CFCF TK$ Sample Time: 12.40												
□ Other, specify QC SAMPLE : A Field Duplicate □ MS/MSD □ EQ Rinsate Blank TOTAL PURGED (ml): 3000	Analysis: Appendix III (boron, calcium, chloride, fluoride, pH, sulfate, and TDS) Appendix IV (total metals, Radium 226, and Radium 228).												
QC SAMPLE : A Field Duplicate MS/MSD EQ Rinsate Blank TOTAL PURGED (ml): 3000	Other, specify												
	QC SAMPLE : TAL Field Duplicate I MS/MSD EQ Rinsate Blank TOTAL PURGED (ml): 3000												
QC Sample ID: 053018-CC-12177AK TV QC Sample Time: 12:40)												
Comments:													

SITE:	TCM LPLF Project Number: <u>CCR</u>						Well ID: LPLF g					
Field Team:	Bill Scheer					Date: 5 - 30 - 18						
Weather/Te	emp: coutos & WARM						Arrival Time to Well: 12:50					
Purge Metho	nod: 🗆 Bladder 🖾 Peristaltic 🗆 Grab 🗆 Other:					_ Initial DTW (ft btc): (
Pump Setting 5: 100 m Min Notes:												
	Field Parameters											
Time ¹	DTW ²	Purge Vol. (ml)	рН	Sp. Cond. (uS/cm)	DO (mg/L)	Temp (°C)	ORP (mV)	Turbidity (NTU)	Note color, odor, etc.			
5	Begin Pumpir	Begin Pumping										
10	(11.31)	1000	5.72	3773	1.53	15.0		1.9				
15	(11.48)	1500	5.72	3785	1,10	15.0		1.6				
20	(11.53)	2000	5.72	3797	,95	15.1		1,5				
Stabilization Criteria ³			± 0.1 units	± 3%	± 0.3 mg/L		± 10 mV	± 10% ⁴				
¹ Collect field para ³ Stabilization achi	¹ Collect field parameters in consistent 3-5 minute intervals for Low-Flow method ² DTW: Total drawdown should not exceed 0.33 ft for Low-Flow method ³ Stabilization achieved after 3 successive readings for Low-Flow method; minimum parameter subset: oH. so. cond., and turbidity or DO											
⁴ For turbidity readings > 10 NTUs ⁵ Low-flow target purge rate is 0.1 - 0.5 L/min (0.03 - 0.13 gal/min) Some la Diagonal and the second												
Analysis: Appendix III (boron calcium chloride pH sulfate and TDS)												
Appendix IV (total metals, Radium 226, and Radium 228).												
Other, specify												
QC SAMPLE : Field Duplicate MS/MSD EQ Rinsate Blank TOTAL PURGED (ml):								2000				
QC Sample ID : QC Sample Time:												
Comments:												
						(F)						

ADDRESS 1317 South 13th Ave., Kelso, WA 98626 PHONE 1 360 577 7222 FAX 1 360 636 1068

Work Order No.: 80819

Chain of Custody

Part of the ALS Group A Campbell Brothers Limited Company

Project Manager:	Bill Scheer										1	Bill	to:			Bill	Schee	r							-	
Client Name:	TransAlta	Centralia	a Mining Com	pany							1	Cor	npar	nv:		TransAlta Centralia Mining										
Address:	913 Big H	lanaford I	Road								1	Add	dress	s:	1	91	B Bia H	lana	ford	Roz	ad					
City, State ZIP:	Centralia,	WA 985	31								1	City	, Sta	ate Z	IP:	Centralia, WA 98531										
Email:	bill schee	er@transa	alta.com		Phone:	360)-33(0-23	32	_	1	Email: bill					bill scheer@transalta.com po#									
Project Name:	LPLF CCI	R											RE	QUE	STE	D ANALYSIS T						TAT				
Project Number:										T			1	T		1		T			T					Routine 21 day
P.O. Number:	4700075	456 Line	290																							Same Day 100%
Sampler's Name:	Bill Schee	er			and the second second	1																				Next Day ***
	SA	MPLE R	ECEIPT			1																				3 Dav
Temperature (°C):	Temp Blank Present		1																				5 Day 50%			
Received Intact: Yes		Yes	No N/A	Wet Ice / I	Blue Ice	1			C																	
Cooler Custody Sea	ls:	Yes	No N/A	Total Cont	tainers:	1																				Surcharges.
Sample Custody Sea	als:	Yes	No N/A			lers	6.																			availability
Sample Identifi	cation	Matrix	Date Sampled	Time Sampled	Lab ID	of Contain		u	dum	oride	ride		ate													Due Date:
						No.		Bord	Calo	Chlo	Fluo	Hd	Sulf	TDS												Comments
053018 - CCR - I	PLF1	GW	05/30/2018	12:15		3		X	X	X	X	X	X	X												
053018 - CCR - L	PLF2R	GW	05/30/2018	13:40		9		X	X	X	X	X	X	X												MS/MSD
053018 - CCR - 1	PLF5	GW	05/30/2018	14:20		2		X	X	X	X	X	X	X						-					10-11	
053018 - CCR - L	PLF7R	GW	05/30/2018	12:40		3		X	X	X	X	X	X	X		1										
053018 - CCR - L	.PLF8	GW	05/30/2018	13:10		3		X	X	X	X	X	X	x	1)
FD		GW	_			3		X	X	X	X	X	X	X												
	_					_																				
						-				-	-		-		-		-		+		-	-+			-	
Dissolved		A	l Ag, Al, As, B, B	a, Be, Ca, Cd	, Co, Cr. (Cu, F	e, K.	Li, M	g, Mi	 п. Мс), Na.	Ni, I	P, Pb.	, Sb.	Se, Si	, Sn.	Sr. TL	V. Zr	, Zr	_			Adu	ditio	nal	Methods Available
Total		A	Ag, Al, As, B, B	a, Be, Ça, Cd	, Co, Cr, (Cu, F	e, K,	Li, M	g, Mi	n, Mc	, Na	Ni, F	P, Pb.	, Sb,	Se, Si	i, Sn,	Sr, Tl,	TI. V. Zn. Zr Upon Request			n Request					
		RE	LINQUISH	ED BY														R	ECE	EIVE	ED	BY	1.1	1		
Print N	Name		, MAAi	gnature			Da	te/T	ime				F	Print	Nam	ne		1			Sig	natu	re	1-11		Date/Time
William	Scheer		11/10/1			05/	31/2	2018	3																	
			0.																							

Appendix B Laboratory Reports

Dennis Morr Transalta Centralia Mining, LLC 913 Big Hanaford Rd Centralia, WA 98531

Laboratory Results for: LPLF CCR

Dear Dennis,

Enclosed are the results of the sample(s) submitted to our laboratory May 31, 2018 For your reference, these analyses have been assigned our service request number **K1805095**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3356. You may also contact me via email at Kurt.Clarkson@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

noe D. Dan

for Kurt Clarkson Sr. Project Manager

ADDRESS 1317 S. 13th Avenue, Kelso, WA 98626 PHONE +1 360 577 7222 | FAX +1 360 636 1068 ALS Group USA, Corp. dba ALS Environmental

Narrative Documents

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Client:Transalta Centralia Mining, LLCProject:LPLF CCRSample Matrix:Ground Water

Service Request: K1805095 Date Received: 05/31/2018

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Laboratory Duplicate (DUP), Matrix Spike (MS), Matrix/Duplicate Matrix Spike (MS/DMS), Laboratory Control Sample (LCS), and Laboratory/Duplicate Laboratory Control Sample (LCS).

Sample Receipt:

Six ground water samples were received for analysis at ALS Environmental on 05/31/2018. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

<u>Metals:</u>

No significant anomalies were noted with this analysis.

General Chemistry:

No significant anomalies were noted with this analysis.

Approved by

noe D. Daw

Date 06/15/2018

SAMPLE DETECTION SUMMARY

CLIENT ID: 053018-CCR-LPLF1	Lab ID: K1805095-001											
Analyte	Results	Flag	MDL	MRL	Units	Method						
Solids, Total Dissolved	2490			5.0	mg/L	SM 2540 C						
Chloride	29.1			1.0	mg/L	9056A						
рН	6.88				pH Units	SM 4500-H+ B						
Sulfate	1320			50	mg/L	9056A						
Boron	0.559			0.021	mg/L	6010C						
Calcium	211			0.021	mg/L	6010C						

CLIENT ID: 053018-CCR-LPLF2R	Lab ID: K1805095-002												
Analyte	Results	Flag	MDL	MRL	Units	Method							
Solids, Total Dissolved	3490			5.0	mg/L	SM 2540 C							
Chloride	8.3			1.0	mg/L	9056A							
рН	6.60				pH Units	SM 4500-H+ B							
Sulfate	1880			50	mg/L	9056A							
Boron	0.351			0.021	mg/L	6010C							
Calcium	499			0.21	mg/L	6010C							

CLIENT ID: 053018-CCR-LPLF5	5 Lab ID: K1805095-003								
Analyte	Results	Flag	MDL	MRL	Units	Method			
Solids, Total Dissolved	1600			5.0	mg/L	SM 2540 C			
Chloride	3.1			1.0	mg/L	9056A			
рН	7.36				pH Units	SM 4500-H+ B			
Sulfate	665			50	mg/L	9056A			
Boron	0.099			0.021	mg/L	6010C			
Calcium	335			0.021	mg/L	6010C			

CLIENT ID: 053018-CCR-LPLF7R	Lab ID: K1805095-004												
Analyte	Results	Flag	MDL	MRL	Units	Method							
Solids, Total Dissolved	2260			5.0	mg/L	SM 2540 C							
Chloride	7.5			1.0	mg/L	9056A							
рН	6.57				pH Units	SM 4500-H+ B							
Sulfate	1510			1.0	mg/L	9056A							
Boron	0.320			0.021	mg/L	6010C							
Calcium	205			0.021	mg/L	6010C							

CLIENT ID: 053018-CCR-LPLF8	Lab ID: K1805095-005												
Analyte	Results	Flag	MDL	MRL	Units	Method							
Solids, Total Dissolved	3540			5.0	mg/L	SM 2540 C							
Chloride	7.2			1.0	mg/L	9056A							
рН	6.15				pH Units	SM 4500-H+ B							
Sulfate	3670			1.0	mg/L	9056A							
Boron	0.936			0.021	mg/L	6010C							
Calcium	430			0.021	mg/L	6010C							

SAMPLE DETECTION SUMMARY

CLIENT ID: FD	Lab ID: K1805095-006											
Analyte	Results	Flag	MDL	MRL	Units	Method						
Solids, Total Dissolved	2320			5.0	mg/L	SM 2540 C						
Chloride	8.1			1.0	mg/L	9056A						
рН	6.47				pH Units	SM 4500-H+ B						
Sulfate	1660			1.0	mg/L	9056A						
Boron	0.331			0.021	mg/L	6010C						
Calcium	210			0.021	mg/L	6010C						

Sample Receipt Information

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

SAMPLE CROSS-REFERENCE

<u>SAMPLE #</u>	CLIENT SAMPLE ID	DATE	TIME
K1805095-001	053018-CCR-LPLF1	5/30/2018	1215
K1805095-002	053018-CCR-LPLF2R	5/30/2018	1340
K1805095-003	053018-CCR-LPLF5	5/30/2018	1420
K1805095-004	053018-CCR-LPLF7R	5/30/2018	1240
K1805095-005	053018-CCR-LPLF8	5/30/2018	1310
K1805095-006	FD	5/30/2018	

K1805095

ADDRESS 1317 South 13th Ave., Kelso, WA 98626 PHONE 1 360 577 7222 FAX 1 360 636 1068

Work Order No.: 80819

Chain of Custody

Part of the ALS Group A Campbell Brothers Limited Company

Project Manager: Bill Sc	heer									Τ	Bill to:				Bill Scheer								
Client Name: Trans/	Alta Centrali	a Mining Com	ipany]	Company:				TransAlta Centralia Mining								
Address: 913 Bi	g Hanaford	Road								Address:					913 Big Hanaford Road								
City, State ZIP: Centra	lia, WA 985	31									City	y, Sta	ite Zl	P:	Centralia, WA 98531								
Email: bill_sc	heer@transa	alta.com		Phone:	360-330-2332				Em	ail: 📐	\dot{W} st	iana.	bill_scheer@transalta.com						po≉	ŧ ()			
Project Name: LPLF (CCR		· · ·		<u> (548</u>)	in an	27 <u>7</u> 72		2000	Q.(.).»	<u>B</u> ANA	RE	QUES	STE	D AN	IALYS	IS		<u>Neve</u>	<u>9</u> 999	<u>diadolari</u>		
Project Number:]]	Ţ					ļ			[Routine 21day
P.O. Number: 47000	75456 Lin	e90													1								Same Day 100%
Sampler's Name: Bill Sc	heer																						Next Day ***
	SAMPLE R	ECEIPT																					3 Day
Temperature (°C):		Temp Bla	nk Present																				🔀 5 Day 50%
Received Intact:	Yes	No N/A	Wet Ice /	Blue Ice					ĺ						1								/ Surcharges.
Cooler Custody Seals:	Yes	No N/A	Total Cont	tainers:																			Please call for
Sample Custody Seals	Yes	No N/A			lers																		availability
Sample Identification	Matrix	Date Sampled	Time Sampled	Lab ID	of Contair		uo	lcium	loriđe	oride		fate	s										Due Date:
					2		ĝ	C	- S	Н	Hd	Sul	Ê										Comments
053018 - CCR - LPLF1	GW	05/30/2018	12:15		3	-	X	X	X	X	X	X	X										
053018 - CCR - LPLF2R	GW	05/30/2018	13:40		9		X	X	X	X	X	X	X										MS/MSD
053018 - CCR - LPLF5	GW	05/30/2018	14:20		2		X	X	X	X	X	X	x										
053018 - CCR - LPLF7R	GW	05/30/2018	12:40		3		X	X	X	X	X	X	X										
053018 - CCR - LPLF8	GW	05/30/2018	13:10		3		X	X	X	X	X	X	x										
FD	GW				3		X	X	X	X	X	X	X										
								[ļ	<u> </u>													
				ļ						ļ													
······································								ļ		 									↓				
Discolud	•		a Pa Ca Cd										Ch S		5.7		/ 7-	75			1		
Total	A	a AL Ac P P	a, be, Ca, Cu	$\frac{1}{Co_{1}}$ Cr (-u, ru	e, K,	LI, MI	<u>y, M</u>	n, Mo	h, INd,	NI, P	, PO,	<u> </u>		, 30, . Sn 1	ы, н, м си ті м	(, Zn,	21 			Addit	lonai Iln	Methods Available
	R F	INOUISH	IFD RY	<u>, co, cr, c</u>	-и, г	e, r,	L1, IVI	g, wit	1, 140	, ina,	ini, r	, ro,	30, 30	e, 31	, 311, .	or, ri, v	RF		/FD	RY	<i>1999999</i> 799999		on Acquest
Print Name	Print Name A Algorithme			Dat	te/Ti	ime				Р	rint N	Jam	е				Sia	natu	re		Date/Time		
William Schoor	aantoo dhittigi i	HMIT			05/	21/2	- <u>(</u>)	<u></u>	ar Nohl	<u>, vedv</u>	<u>Nosiv</u>	agesta.	1					<u></u>		25	2	<u>tonicii)</u>	5. 21/10 100
whiten 201661		W" 1	μ		103/	51/2	.010) 		d	<u>J44</u>	17	12	hu,	47 MA	;		£			\swarrow		12018 1530

ALS	PC	K	-
Cooler Receipt and Preservation Form		~	
Client TRANSALTA Service Request K18 05095			
Received: 5-31-18 Opened: 5-31-18 By: 151 Unloaded: 5-31-1	<u>б</u> Ву:е	ASP	
Samples were received via? USPS Fed Ex UPS DHI PDX (ourier > Hand De	elivered		
2. Samples were received in: (circle) Cooler Box Envelope Other		NA	
3. Were custody seals on coolers? NA (N If yes, how many and where? (TON FRO	WT	
If present, were custody seals intact? \hat{O} N If present, were they signed and dated	d?	Ý	N
Raw Corrected, Raw Corrected Corr. Thermometer Cooler/COC ID Trac	cking Number		Filed
$\frac{1}{1.8} 2.0 1.0 1.2 70.2 356 82819$			<u>rileu</u>
4. Packing material: Inserts Baggies Bubble Wrap Gel Packs. Wet Ice Dry Ice Sleeves	····		
5. Were custody papers properly filled out (ink, signed, etc.)?	NA	(Ŷ)	N
6. Were samples received in good condition (temperature, unbroken)? Indicate in the table below.	NA	$(\tilde{\mathbf{Y}})$	N
If applicable, tissue samples were received: Frozen Partially Thawed The	hawed	$\tilde{\boldsymbol{\omega}}$	21
/. were all sample labels complete (i.e analysis, preservation, etc.)?	NA NA	CD CD	N
 Did an sample labels and tags agree with custody papers? <i>Indicate major discrepancies in the table on page</i> Were appropriate bottles/containers and volumes received for the tests indicated? 	gez, na Na	$\overline{\mathbf{A}}$	IN N
10. Were the pH-preserved bottles (see SMO GEN SOP) received at the appropriate pH? Indicate in the table h	below NA	(V)	N
11. Were VOA vials received without headspace? Indicate in the table below.	(NA	Y	N
12. Was C12/Res negative?	NĂ	Y	N
]
Sample ID on Bottle Sample ID on COC Ide	ntified by:	<u> </u>	
			/ ~~~~~
Bottle Count Out of Head- Volume Sample ID Bottle Type Temp space Broke pH Reagent added	Reagent Lot Number	Initials	Time

Notes, Discrepancies, & Resolutions:

 		and the set of the		1987	n _{de} lan	
 C barris of Park					Çeşa	
	ter te			J &		

Page____of___

.

Miscellaneous Forms

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- $i \,$ $\,$ The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- ${f F}$ The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEH	http://dec.alaska.gov/eh/lab/cs/csapproval.htm	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L16-58-R4
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	http://health.hawaii.gov/	-
ISO 17025	http://www.pjlabs.com/	L16-57
Louisiana DEQ	http://www.deq.louisiana.gov/page/la-lab-accreditation	03016
Maine DHS	http://www.maine.gov/dhhs/	WA01276
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/enforcement/oqa.html	WA005
New York - DOH	https://www.wadsworth.org/regulatory/elap	12060
North Carolina DEQ	https://deq.nc.gov/about/divisions/water-resources/water-resources- data/water-sciences-home-page/laboratory-certification-branch/non-field-lab- certification	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaborator yAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/EnvironmentalLabCertification/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wyoming (EPA Region 8)	https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water	-
Kelso Laboratory Website	www.alsglobal.com	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LOD	Limit of Detection
LOQ	Limit of Quantitation
LUFT	Leaking Underground Fuel Tank
M MCL	Modified Maximum Contaminant Level is the highest permissible concentration of a substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH tr	Total Petroleum Hydrocarbons Trace level is the concentration of an analyte that is less than the PQL but greater than or equal to the MDL.

Analyst Summary report

Client: Transalta Centralia Mining, LLC **Project:** LPLF CCR

053018-CCR-LPLF1

K1805095-001

Ground Water

Sample Name:

Sample Matrix:

Lab Code:

Service Request: K1805095

Date Collected: 05/30/18 **Date Received:** 05/31/18

Analysis Method		Extracted/Digested By	Analyzed By
9056A		JIIIII	ICHAN
SM 2540 C			SSPAIN
SM 4500-H+ B			ACHEATLEY
Sample Name:	053018-CCR-LPLF2R		Date Collected: 05/30/18
Lab Code:	K1805095-002		Date Received: 05/31/18
Sample Matrix:	Ground Water		
Analysis Method		Extracted/Digested By	Analyzed By
6010C		JHINSON	EMCALLISTER
9056A			JCHAN
SM 2540 C			SSPAIN
SM 4500-H+ B			ACHEATLEY
Sample Name:	053018-CCR-LPLF5		Date Collected: 05/30/18
Lab Code:	K1805095-003		Date Received: 05/31/18
Sample Matrix:	Ground Water		
Analysis Method		Extracted/Digested By	Analyzed By
6010C		JHINSON	EMCALLISTER
9056A			JCHAN
SM 2540 C			SSPAIN
SM 4500-H+ B			ACHEATLEY
Sample Name:	053018-CCR-LPLF7R		Date Collected: 05/30/18
Lab Code:	K1805095-004		Date Received: 05/31/18
Sample Matrix:	Ground Water		
Analysis Method		Extracted/Digested By	Analyzed By
6010C		JHINSON	EMCALLISTER
Printed 6/14/2018 5:14:	15 PM		Superset Reference:18-0000467683

Superset Reference:18-0000467683 rev 00

Analyst Summary report

Client: Transalta Centralia Mining, LLC **Project:** LPLF CCR

053018-CCR-LPLF7R

K1805095-004

Ground Water

Sample Name:

Sample Matrix:

Sample Name:

Lab Code:

FD

K1805095-006

Lab Code:

Service Request: K1805095

Date Collected: 05/30/18 **Date Received:** 05/31/18

Analysis Method		Extracted/Digested By	Analyzed By
9056A			JCHAN
SM 2540 C			SSPAIN
SM 4500-H+ B			ACHEATLEY
Sample Name:	053018-CCR-LPLF8	Dat	e Collected: 05/30/18
Lab Code:	K1805095-005	Da	te Received: 05/31/18
Sample Matrix:	Ground Water		
Analysis Method		Extracted/Digested By	Analyzed By
6010C		JHINSON	EMCALLISTER
9056A			JCHAN
SM 2540 C			SSPAIN
SM 4500-H+ B			ACHEATLEY

Date Collected:	05/30/18
Date Received:	05/31/18

Sample Matrix: Ground	Water	
Analysis Method	Extracted/Digested By	Analyzed By
6010C	JHINSON	EMCALLISTER
9056A		JCHAN
SM 2540 C		SSPAIN
SM 4500-H+ B		ACHEATLEY

Sample Results

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Metals

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request: K1805095
Project:	LPLF CCR	Date Collected: 05/30/18 12:15
Sample Matrix:	Ground Water	Date Received: 05/31/18 13:30
Sample Name:	053018-CCR-LPLF1	Basis: NA
Lab Code:	K1805095-001	

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Boron	6010C	0.559	mg/L	0.021	1	06/04/18 11:52	06/01/18	
Calcium	6010C	211	mg/L	0.021	1	06/04/18 11:52	06/01/18	

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request: K1805095
Project:	LPLF CCR	Date Collected: 05/30/18 13:40
Sample Matrix:	Ground Water	Date Received: 05/31/18 13:30
Sample Name:	053018-CCR-LPLF2R	Basis: NA
Lab Code:	K1805095-002	

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Boron	6010C	0.351	mg/L	0.021	1	06/04/18 11:34	06/01/18	
Calcium	6010C	499	mg/L	0.21	10	06/04/18 11:45	06/01/18	

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request: K1805095
Project:	LPLF CCR	Date Collected: 05/30/18 14:20
Sample Matrix:	Ground Water	Date Received: 05/31/18 13:30
Sample Name:	053018-CCR-LPLF5	Basis: NA
Lab Code:	K1805095-003	

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Boron	6010C	0.099	mg/L	0.021	1	06/04/18 12:02	06/01/18	
Calcium	6010C	335	mg/L	0.021	1	06/04/18 12:02	06/01/18	

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request: K1805095
Project:	LPLF CCR	Date Collected: 05/30/18 12:40
Sample Matrix:	Ground Water	Date Received: 05/31/18 13:30
Sample Name:	053018-CCR-LPLF7R	Basis: NA
Lab Code:	K1805095-004	

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Boron	6010C	0.320	mg/L	0.021	1	06/04/18 12:04	06/01/18	
Calcium	6010C	205	mg/L	0.021	1	06/04/18 12:04	06/01/18	

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request: K1805095
Project:	LPLF CCR	Date Collected: 05/30/18 13:10
Sample Matrix:	Ground Water	Date Received: 05/31/18 13:30
Sample Name:	053018-CCR-LPLF8	Basis: NA
Lab Code:	K1805095-005	

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Boron	6010C	0.936	mg/L	0.021	1	06/04/18 12:07	06/01/18	
Calcium	6010C	430	mg/L	0.021	1	06/04/18 12:07	06/01/18	

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request: K1805095
Project:	LPLF CCR	Date Collected: 05/30/18
Sample Matrix:	Ground Water	Date Received: 05/31/18 13:30
Sample Name:	FD	Basis: NA
Lab Code:	K1805095-006	

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Boron	6010C	0.331	mg/L	0.021	1	06/04/18 12:10	06/01/18	
Calcium	6010C	210	mg/L	0.021	1	06/04/18 12:10	06/01/18	

General Chemistry

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request: K1805095
Project:	LPLF CCR	Date Collected: 05/30/18 12:15
Sample Matrix:	Ground Water	Date Received: 05/31/18 13:30
Sample Name:	053018-CCR-LPLF1	Basis: NA
Lab Code:	K1805095-001	

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Chloride	9056A	29.1	mg/L	1.0	10	06/08/18 18:10	
Fluoride	9056A	ND Ui	mg/L	2.0	10	06/08/18 18:10	
pH	SM 4500-H+ B	6.88	pH Units	-	1	05/31/18 17:03	Η
Sulfate	9056A	1320	mg/L	50	500	06/08/18 12:03	

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request: K1805095
Project:	LPLF CCR	Date Collected: 05/30/18 12:15
Sample Matrix:	Ground Water	Date Received: 05/31/18 13:30
Sample Name:	053018-CCR-LPLF1	Basis: NA
Lab Code:	K1805095-001	

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Dissolved	SM 2540 C	2490	mg/L	5.0	1	06/01/18 13:30	

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request: K1805095
Project:	LPLF CCR	Date Collected: 05/30/18 13:40
Sample Matrix:	Ground Water	Date Received: 05/31/18 13:30
Sample Name:	053018-CCR-LPLF2R	Basis: NA
Lab Code:	K1805095-002	

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Chloride	9056A	8.3	mg/L	1.0	10	06/08/18 18:20	
Fluoride	9056A	ND Ui	mg/L	2.0	10	06/08/18 18:20	
pН	SM 4500-H+ B	6.60	pH Units	-	1	05/31/18 17:04	Н
Sulfate	9056A	1880	mg/L	50	500	06/08/18 11:23	

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request: K1805095
Project:	LPLF CCR	Date Collected: 05/30/18 13:40
Sample Matrix:	Ground Water	Date Received: 05/31/18 13:30
Sample Name:	053018-CCR-LPLF2R	Basis: NA
Lab Code:	K1805095-002	

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Dissolved	SM 2540 C	3490	mg/L	5.0	1	06/01/18 13:30	

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request: K1805095
Project:	LPLF CCR	Date Collected: 05/30/18 14:20
Sample Matrix:	Ground Water	Date Received: 05/31/18 13:30
Sample Name:	053018-CCR-LPLF5	Basis: NA
Lab Code:	K1805095-003	

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Chloride	9056A	3.1	mg/L	1.0	10	06/08/18 18:30	
Fluoride	9056A	ND Ui	mg/L	2.0	10	06/08/18 18:30	
pH	SM 4500-H+ B	7.36	pH Units	-	1	05/31/18 17:06	Н
Sulfate	9056A	665	mg/L	50	500	06/08/18 12:13	

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request: K1805095
Project:	LPLF CCR	Date Collected: 05/30/18 14:20
Sample Matrix:	Ground Water	Date Received: 05/31/18 13:30
Sample Name:	053018-CCR-LPLF5	Basis: NA
Lab Code:	K1805095-003	

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Dissolved	SM 2540 C	1600	mg/L	5.0	1	06/01/18 13:30	

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request: K1805095
Project:	LPLF CCR	Date Collected: 05/30/18 12:40
Sample Matrix:	Ground Water	Date Received: 05/31/18 13:30
Sample Name:	053018-CCR-LPLF7R	Basis: NA
Lab Code:	K1805095-004	

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Chloride	9056A	7.5	mg/L	1.0	10	06/08/18 18:40	
Fluoride	9056A	ND Ui	mg/L	2.0	10	06/08/18 18:40	
pН	SM 4500-H+ B	6.57	pH Units	-	1	05/31/18 17:08	Н
Sulfate	9056A	1510	mg/L	1.0	10	06/08/18 18:40	

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request: K1805095
Project:	LPLF CCR	Date Collected: 05/30/18 12:40
Sample Matrix:	Ground Water	Date Received: 05/31/18 13:30
Sample Name:	053018-CCR-LPLF7R	Basis: NA
Lab Code:	K1805095-004	

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Dissolved	SM 2540 C	2260	mg/L	5.0	1	06/01/18 13:30	
Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request: K1805095
Project:	LPLF CCR	Date Collected: 05/30/18 13:10
Sample Matrix:	Ground Water	Date Received: 05/31/18 13:30
Sample Name:	053018-CCR-LPLF8	Basis: NA
Lab Code:	K1805095-005	

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Chloride	9056A	7.2	mg/L	1.0	10	06/08/18 18:50	
Fluoride	9056A	ND Ui	mg/L	2.0	10	06/08/18 18:50	
pН	SM 4500-H+ B	6.15	pH Units	-	1	05/31/18 17:10	Η
Sulfate	9056A	3670	mg/L	1.0	10	06/08/18 18:50	

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request: K1805095
Project:	LPLF CCR	Date Collected: 05/30/18 13:10
Sample Matrix:	Ground Water	Date Received: 05/31/18 13:30
Sample Name:	053018-CCR-LPLF8	Basis: NA
Lab Code:	K1805095-005	

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Dissolved	SM 2540 C	3540	mg/L	5.0	1	06/01/18 13:30	

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request: K1805095
Project:	LPLF CCR	Date Collected: 05/30/18
Sample Matrix:	Ground Water	Date Received: 05/31/18 13:30
Sample Name:	FD	Basis: NA
Lab Code:	K1805095-006	

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Chloride	9056A	8.1	mg/L	1.0	10	06/08/18 19:00	
Fluoride	9056A	ND Ui	mg/L	2.0	10	06/08/18 19:00	
pH	SM 4500-H+ B	6.47	pH Units	-	1	05/31/18 17:12	
Sulfate	9056A	1660	mg/L	1.0	10	06/08/18 19:00	

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request: K1805095
Project:	LPLF CCR	Date Collected: 05/30/18
Sample Matrix:	Ground Water	Date Received: 05/31/18 13:30
Sample Name:	FD	Basis: NA
Lab Code:	K1805095-006	

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Dissolved	SM 2540 C	2320	mg/L	5.0	1	06/01/18 13:30	

QC Summary Forms

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Metals

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request: K1805095
Project:	LPLF CCR	Date Collected: NA
Sample Matrix:	Ground Water	Date Received: NA
Sample Name:	Method Blank	Basis: NA
Lab Code:	KQ1807298-02	

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Boron	6010C	ND U	mg/L	0.021	1	06/04/18 11:30	06/01/18	
Calcium	6010C	ND U	mg/L	0.021	1	06/04/18 11:30	06/01/18	

QA/QC Report

Client:	Transalta Centralia Mining, LI	.C	Service	e Request:	K1805095
Project:	LPLF CCR		Date C	ollected:	05/30/18
Sample Matrix:	Ground Water		Date R	eceived:	05/31/18
			Date A	nalyzed:	06/4/18
			Date E	xtracted:	06/1/18
		Matrix Spike Su	mmary		
		Total Meta	ls		
Sample Name:	053018-CCR-LPLF2R			Units:	mg/L
Lab Code:	K1805095-002			Basis:	NA
Analysis Method:	6010C				
Prep Method:	EPA CLP-METALS ILM04.0				
		Matrix Spike			
		KQ1807298-04			
Analyte Name	Sample Result	Result	Spike Amount	% Rec	% Rec Limits

0.762

496

0.500

10.0

82

-33 #

75-125

75-125

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

0.351

499

Boron

Calcium

QA/QC Report

Client:	Transalta Centralia	Mining, LLC			Service I	Request:	K180509	95
Project	LPLF CCR				Date Co	ollected:	05/30/18	3
Sample Matrix:	Ground Water				Date R	eceived:	05/31/18	3
					Date A	nalyzed:	06/04/18	3
		R	Replicate Samp	ole Summary				
			Total M	letals				
Sample Name:	053018-CCR-LPL	F2R				Units:	mg/L	
Lab Code:	K1805095-002					Basis:	NA	
	Analysis		Sample	Duplicate Sample KQ1807298-03				
Analyte Name	Method	MRL	Result	Result	Average	RP	D D	RPD Limit
Boron	6010C	0.021	0.351	0.340	0.346	3		20

499

484

492

3

20

0.21

6010C

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Calcium

QA/QC Report

Client:Transalta Centralia Mining, LLCProject:LPLF CCRSample Matrix:Ground Water

Service Request: K1805095 Date Analyzed: 06/04/18

Lab Control Sample Summary Total Metals

Units:mg/L Basis:NA

Lab Control Sample

KQ1807298-01

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Boron	6010C	0.474	0.500	95	80-120
Calcium	6010C	12.9	12.5	103	80-120

General Chemistry

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request: K1	1805095
Project:	LPLF CCR	Date Collected: NA	A
Sample Matrix:	Ground Water	Date Received: NA	A
Sample Name: Lab Code:	Method Blank K1805095-MB1	Basis: NA	4

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Chloride	9056A	ND U	mg/L	0.10	1	06/08/18 10:53	
Fluoride	9056A	ND U	mg/L	0.20	1	06/08/18 10:53	
Sulfate	9056A	ND U	mg/L	0.10	1	06/08/18 10:53	

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request: K1805095
Project:	LPLF CCR	Date Collected: NA
Sample Matrix:	Ground Water	Date Received: NA
Sample Name:	Method Blank	Basis: NA
Lab Code:	K1805095-MB1	

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Dissolved	SM 2540 C	ND U	mg/L	5.0	1	06/01/18 13:30	

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request: K1805095
Project:	LPLF CCR	Date Collected: NA
Sample Matrix:	Ground Water	Date Received: NA
Sample Name:	Method Blank	Basis: NA
Lab Code:	K1805095-MB2	

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Dissolved	SM 2540 C	ND U	mg/L	5.0	1	06/01/18 13:30	

QA/QC Report

Client:	Transalta Cent	ralia Mining	, LLC			Serv	vice Reques	st: K	1805095	
Project:	LPLF CCR					Date	e Collected	: 05	/30/18	
Sample Matrix:	Ground Water					Date	e Received:	05	/31/18	
						Date	e Analyzed	: 06	6/8/18	
						Date	e Extracted	l: N.	A	
			Duplicate	e Matrix Sj	oike Sumn	nary				
				Sulfat	e					
Sample Name:	053018-CCR-	LPLF2R					Units	: m	g/L	
Lab Code:	K1805095-00	2					Basis	: N.	A	
Analysis Method:	9056A									
Prep Method:	None									
			Matrix K180509	x Spike 5-002MS		Duplicate M K1805095-	atrix Spike 002DMS			
	Sample		Spike			Spike		% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Sulfate	1880	3990	2000	106	3770	2000	95	90-110	6	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

			QA/QC Report				
Client:	Transalta Centralia Mining,	LLC			Service Req	uest: K1805	5095
Project	LPLF CCR				Date Collec	cted: 05/30	/18
Sample Matrix:	Ground Water				Date Recei	ved: 05/31	/18
					Date Analy	zed: 05/31	/18
		Replica	te Sample Sun	nmary			
		General	Chemistry Par	ameters			
Sample Name:	053018-CCR-LPLF2R				τ	J nits: pH U	nits
Lab Code:	K1805095-002				F	Basis: NA	
			Sample	Duplicate Sample K1805095- 002DUP			
Analyte Name	Analysis Method	MRL	Result	Result	Average	RPD	RPD Limit
pH	SM 4500-H+ B	-	6.60	6.74	6.67	2	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client:	Transalta Centralia Mining,	LLC			Service Requ	uest: K1805	095
Project	LPLF CCR				Date Collec	cted: 05/30/	18
Sample Matrix:	Ground Water				Date Recei	ved: 05/31/	18
					Date Analy	zed: 06/01/	18 - 06/08/18
		Replica	te Sample Sun	nmary			
		General	Chemistry Par	ameters			
Sample Name:	053018-CCR-LPLF2R				ť	nits: mg/L	
Lab Code:	K1805095-002				B	asis: NA	
			Sec. 1	Duplicate Sample K1805095-			
Analyte Name	Analysis Method	MRL	Result	Result	Average	RPD	RPD Limit
Solids, Total Dissolved	SM 2540 C	5.0	3490	3450	3470	1	5
Sulfate	9056A	50	1880	1780	1830	5	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client:Transalta Centralia Mining, LLCProject:LPLF CCRSample Matrix:Ground Water

Service Request: K1805095 Date Analyzed: 06/01/18 - 06/08/18

Lab Control Sample Summary General Chemistry Parameters

Units:mg/L Basis:NA

Lab Control Sample K1805095-LCS

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Chloride	9056A	5.18	5.00	104	80-120
Fluoride	9056A	5.33	5.00	107	90-110
Solids, Total Dissolved	SM 2540 C	484	523	93	85-115
Sulfate	9056A	5.23	5.00	105	90-110

QA/QC Report

Client:Transalta Centralia Mining, LLCProject:LPLF CCRSample Matrix:Ground Water

Service Request: K1805095 **Date Analyzed:** 05/31/18

Lab Control Sample Summary General Chemistry Parameters

Units:pH Units Basis:NA

Lab Control Sample K1805095-LCS

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
pH	SM 4500-H+ B	8.40	8.41	100	85-115

Dennis Morr Transalta Centralia Mining, LLC 913 Big Hanaford Rd Centralia, WA 98531

Laboratory Results for: LPLF CCR

Dear Dennis,

Enclosed are the results of the sample(s) submitted to our laboratory August 09, 2018 For your reference, these analyses have been assigned our service request number **K1807488**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3356. You may also contact me via email at Kurt.Clarkson@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Kunt Clauson

Kurt Clarkson Sr. Project Manager

> ADDRESS 1317 S. 13th Avenue, Kelso, WA 98626 PHONE +1 360 577 7222 | FAX +1 360 636 1068 ALS Group USA, Corp. dba ALS Environmental

Narrative Documents

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Client:Transalta Centralia Mining, LLCProject:LPLF CCR

Service Request: K1807488 Date Received: 08/09/2018

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Laboratory Duplicate (DUP), Matrix Spike (MS), Matrix/Duplicate Matrix Spike (MS/DMS), Laboratory Control Sample (LCS), and Laboratory/Duplicate Laboratory Control Sample (LCS).

Sample Receipt:

Sample Matrix: Water

Two water samples were received for analysis at ALS Environmental on 08/09/2018. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

<u>Metals:</u>

No significant anomalies were noted with this analysis.

General Chemistry:

No significant anomalies were noted with this analysis.

Runt Clauson

Approved by

Date 08/24/2018

SAMPLE DETECTION SUMMARY

CLIENT ID: 080918-CCR-LPLF2R		Lab	D: K1807			
Analyte	Results	Flag	MDL	MRL	Units	Method
Solids, Total Dissolved	3480			5.0	mg/L	SM 2540 C
Boron	0.325			0.021	mg/L	6010C
Calcium	463			0.021	mg/L	6010C
CLIENT ID: 080918-CCR-LPLF8		Lab	DID: K1807	7488-002		
Analyte	Results	Flag	MDL	MRL	Units	Method
Sulfate	2520			100	mg/L	9056A

Sample Receipt Information

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

SAMPLE CROSS-REFERENCE

<u>SAMPLE #</u>	CLIENT SAMPLE ID	DATE	TIME
K1807488-001	080918-CCR-LPLF2R	8/9/2018	0845
K1807488-002	080918-CCR-LPLF8	8/9/2018	0920

ADDRESS 1317 South 13th Ave., Kelso, WA 98626 PHONE 1 360 577 7222 FAX 1 360 636 1068

K1807488

Work Order No.: 80819

Chain of Custody

Part of the ALS Group A Campbell Brothers Limited Company

Project Manager: E	Bill Scheer											Bill	to:	(174)		Bill	Sche	er						
Client Name:	FransAlta (sAlta Centralia Mining Company										Company:			TransAlta Centralia Mining									
Address: 9	913 Big Ha	naford F	≀oad									Add	dress			913 Big Hanaford Road								
City, State ZIP: Centralia, WA 98531										City, State ZIP:			Cer	ntrali	a, WA	9853	1							
Email: Markanish b	oill_scheer	@transa	<u>lta.com</u>		Phone:	36	0-330	0-23	32			Em	ail: 📄		<u>Neter</u>	bill	sche	er@tra	insalta	a.com		po#	Ł	
Project Name:	PLF CCR						Valeven.	5 5 4 5 4	- 277	2018.53 	2000) 1	yeny	RE	QUE	STE	D AN	ALY	'SIS	<u> (</u>) () () () () () () () () (Neter -	2999 T. T.	· · · · · · · · ·	TAT AND AND A
Project Number:																								Routine 21day
P.O. Number: 4	17000754	56 Line	90													[Į		Į				1	Same Day 100%
Sampler's Name: B	Sill Scheer																							Next Day ***
n hen stelle state her her her her her her her her her he	SAN	APLE RE	CEIPT																					3 Day
Temperature (°C):			Temp Bla	nk Present		1																		5 Day 50%
Received Intact:		Yes	No N/A	Wet Ice /	Blue Ice]																Surcharges
Cooler Custody Seals:	. NARARA	Yes	No N/A	Total Con	tainers:	1																		Please call for
Sample Custody Seals	s: 000380	Yes	No N/A			ers		Ha	228	5		ø				∣⊢	9							availability
Sample Identificat	tion	Matrix	Date Sampled	Time Sampled	Lab ID	lo. of Contair		M 4500-H + B /	04.0 / Radium	M 2540 C / TD	470A / Hg T	056A / Chlorid	056A / F	056A / SO4	010C / Metals	020A / Metals	03.0 Radium 2							Due Date:
080918-CCR-I PI F	2R	GW/	08/09/2018	8.45	a shina a saiyi	2	1.1.1.1	S	6	N N		<u></u>	<u>م</u>	6	о Y	9 Y	6	<u></u>		+			<u> </u>	Comments
080918-CCR-LPLF	F8	GW	08/09/2018	9:20		1			┢────	+^-	<u>+</u>			Y	<u> </u>	~								Boron and Calcium needed
	<u> </u>	011	00/00/2010	0.20		-					 			~										Sunate
					1					┼──								 _		-	<u>├</u> }			
					-													— -		-			_	
		<u>.</u>					<u> </u>			1	 													
										<u> </u>														
· · · · · · · · · · · · · · · · · · ·					ļ						<u> </u>								_					
																							<u> </u>	
																							<u> </u>	
											ļ													
	<u></u>	15 X 1. 55								L	L								<u> </u>					
Dissolved		A	g, Al, As, B, B	a, Be, Ca, Cd	, Co, Cr, (Lu, F	е, К,	Li, M	g, Mi	n, Mc), Na,	Ni,	P, Pb,	Sb, :	Se, Si	, Sn,	Sr, T	l, V, Zr	, Zr			Addit	iona	I Methods Available
lotal			g, Al, As, B, B;	a, Be, Ca, Cd	, Co, Cr, (Cu, F	<u>е, К,</u>	Li, M	<u>g, M</u>	n, Mc), Na,	Ni, I	P, Pb,	Sb,	Se, Si	i, Sn,	Sr, T	I, V, Zr	, Zr					on kequest
		RE	LINQUISH	HO BY														R	=ÇEI	VED	<u>R</u> A	praca. Na sa	<u> </u>	
Print Nai	me	2933년 등	1/1/ Si	Inature			Dat	te/Ti	me			I	PI	int l	Nam	e			LN	Sig	natu	re	49033	Date/Time
William Sc	heer		IMIT A			08/	09/2	2018				$\langle \Lambda \rangle$	Mo	na	71-1)		4	\mathcal{T}	N		AL	~ <u> </u>	Shire 14M
			P P V (- 1		~								- 	<u></u>	,				9			1.0	<u>ب</u>	- THE HUS

						PC K	~
	Cooler	Receipt and I	Preservation	Form	<i></i>		**************************************
Tranchia			Service Reo		1488	. /	
Chem <u>Transmitter</u>	. Olali	0/ D		Unloaded:	alle pu	1/	
Received: brancher Ope	ened: <u>x luff</u>	<u>ұ</u> Ву:	qq-	Unioaded. Y	1([_0Ву.	n	
I. Samples were received via? U	SPS Fed Ex	UPS L	OHL PDX	(Courier) H	and Delivered		
2. Samples were received in: (circle) (Cooler)	Box Env	elope Ol	her	£	NA	
3. Were <u>custody seals</u> on coolers?	NA (Y N I	If yes, how man	y and where?	1 Front		~~
If present, were custody seals inta	act?	N N	If present, w	ere they signed a	nd dated?	Y	N
Raw Corrected. Raw C	orrected Corr.	Thermometer	Cooler/COC	ID NA	Tracking Numb	er N	
1.9 Cooler remp lemp Blank Te	VA -D.1	352					2 1 1100
<u>├</u>	<u> </u>		 				
				L			
4. Packing material: <i>Inserts Bay</i>	ggies Bubble W	rap Gel Packs	Wet Ice D	ry Ice Sleeves		. Go	````````````````````````````````
5. Were custody papers properly fil	ied out (ink, sign	ed, etc.)?	L. Barres in de		IN/		IN N
6. were samples received in good c	able, tissue samp	es were received	inaicate in th Frozen	e table below. Partially Thawe	d Thawed	T D	iN
7. Were all sample labels complete	(i.e analysis, pres	ervation, etc.)?		,	N	4 🕐	N
8. Did all sample labels and tags ag	ree with custody p	papers? Indicate	major discrepa	ncies in the table	on page 2. N.	A (Y)	N
9. Were appropriate bottles/contain	ters and volumes	received for the te	ests indicated?		N.	A Go	Ν
10. Were the pH-preserved bottles ((see SMO GEN SOI	P) received at the	appropriate pH	? Indicate in the	table below N.	A (Y)	N
11. Were VOA vials received with	out headspace? Ir	dicate in the tabl	e below.		(N	A Y	N
12. Was C12/Res negative?					(N	A Y	N
		0					
Sample ID on Bottle		Sample ID on CC		<u>}</u>	Identified by:		
				<u> </u>	<u> </u>	<u></u>	{
				- 			
				1		1	
Sample ID	Bottle Count Bottle Type	Out of Head- Temp space Bro	ke pH R	eagent addec	e Reagent Lot Number	Initials	Time

Sample ID	Bottle Type	Temp	space	Broke	pm	rteagent	audeo	Number	Initials	lime
			1							,
		1	1							
		1	1							
			1		[1	
Notes, Discrepancies, & Resolu	utions:									

And and a second determined on the first of the first of

Miscellaneous Forms

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- $i \,$ $\,$ The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- ${f F}$ The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEH	http://dec.alaska.gov/eh/lab/cs/csapproval.htm	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L16-58-R4
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	http://health.hawaii.gov/	-
ISO 17025	http://www.pjlabs.com/	L16-57
Louisiana DEQ	http://www.deq.louisiana.gov/page/la-lab-accreditation	03016
Maine DHS	http://www.maine.gov/dhhs/	WA01276
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/enforcement/oqa.html	WA005
New York - DOH	https://www.wadsworth.org/regulatory/elap	12060
North Carolina DEQ	https://deq.nc.gov/about/divisions/water-resources/water-resources- data/water-sciences-home-page/laboratory-certification-branch/non-field-lab- certification	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaborator yAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/EnvironmentalLabCertification/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wyoming (EPA Region 8)	https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water	-
Kelso Laboratory Website	www.alsglobal.com	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LOD	Limit of Detection
LOQ	Limit of Quantitation
LUFT	Leaking Underground Fuel Tank
M MCL	Modified Maximum Contaminant Level is the highest permissible concentration of a substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH tr	Total Petroleum Hydrocarbons Trace level is the concentration of an analyte that is less than the PQL but greater than or equal to the MDL.

Analyst Summary report

Client:Transalta Centralia Mining, LLCProject:LPLF CCR

080918-CCR-LPLF2R

K1807488-001

Water

Sample Name:

Sample Matrix:

Lab Code:

Service Request: K1807488

Date Collected: 08/9/18 **Date Received:** 08/9/18

Analysis Method		Extracted/Digested By	Analyzed By
6010C		JHINSON	AMCKORNEY
SM 2540 C			JMADISON
Sample Name:	080918-CCR-LPLF8	D	ate Collected: 08/9/18
Lab Code:	K1807488-002	D	ate Received: 08/9/18
Sample Matrix:	Water		
Analysis Method		Extracted/Digested By	Analyzed By
9056A			MRODRIGUEZ

Printed 8/24/2018 5:02:47 PM

Sample Results

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Metals

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request: K1807488
Project:	LPLF CCR	Date Collected: 08/09/18 08:45
Sample Matrix:	Water	Date Received: 08/09/18 14:10
Sample Name:	080918-CCR-LPLF2R	Basis: NA
Lab Code:	K1807488-001	

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Boron	6010C	0.325	mg/L	0.021	1	08/22/18 13:57	08/13/18	
Calcium	6010C	463	mg/L	0.021	1	08/22/18 13:57	08/13/18	

General Chemistry

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com
Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request: K1807488
Project:	LPLF CCR	Date Collected: 08/09/18 08:45
Sample Matrix:	Water	Date Received: 08/09/18 14:10
Sample Name:	080918-CCR-LPLF2R	Basis: NA
Lab Code:	K1807488-001	

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Dissolved	SM 2540 C	3480	mg/L	5.0	1	08/09/18 15:15	

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request: K1807488
Project:	LPLF CCR	Date Collected: 08/09/18 09:20
Sample Matrix:	Water	Date Received: 08/09/18 14:10
Sample Name:	080918-CCR-LPLF8	Basis: NA
Lab Code:	K1807488-002	

	Analysis						
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Sulfate	9056A	2520	mg/L	100	1000	08/13/18 13:59	

QC Summary Forms

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Metals

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request: K1807488
Project:	LPLF CCR	Date Collected: NA
Sample Matrix:	Water	Date Received: NA
Sample Name:	Method Blank	Basis: NA
Lab Code:	KQ1810901-04	

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Boron	6010C	ND U	mg/L	0.021	1	08/22/18 12:30	08/13/18	
Calcium	6010C	ND U	mg/L	0.021	1	08/22/18 12:30	08/13/18	

QA/QC Report

Client:Transalta Centralia Mining, LLCProject:LPLF CCRSample Matrix:Water

Service Request: K1807488 Date Analyzed: 08/22/18

Lab Control Sample Summary Total Metals

Units:mg/L Basis:NA

Lab Control Sample

KQ1810901-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Boron	6010C	0.436	0.500	87	80-120
Calcium	6010C	11.2	12.5	90	80-120

General Chemistry

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request: K1807488
Project:	LPLF CCR	Date Collected: NA
Sample Matrix:	Water	Date Received: NA
Sample Name:	Method Blank	Basis: NA
Lab Code:	K1807488-MB1	

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Dissolved	SM 2540 C	ND U	mg/L	5.0	1	08/09/18 15:15	

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request: K1807488
Project:	LPLF CCR	Date Collected: NA
Sample Matrix:	Water	Date Received: NA
Sample Name:	Method Blank	Basis: NA
Lab Code:	K1807488-MB1	

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Sulfate	9056A	ND U	mg/L	0.10	1	08/13/18 10:27	

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request: K1807488
Project:	LPLF CCR	Date Collected: NA
Sample Matrix:	Water	Date Received: NA
Sample Name:	Method Blank	Basis: NA
Lab Code:	K1807488-MB2	

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Dissolved	SM 2540 C	ND U	mg/L	5.0	1	08/09/18 15:15	

QA/QC Report

Client:Transalta Centralia Mining, LLCProject:LPLF CCRSample Matrix:Water

Service Request: K1807488 Date Analyzed: 08/09/18 - 08/13/18

Lab Control Sample Summary General Chemistry Parameters

Units:mg/L Basis:NA

Lab Control Sample K1807488-LCS

Analyte Name **Analytical Method** Result **Spike Amount** % Rec % Rec Limits Solids, Total Dissolved SM 2540 C 482 523 92 85-115 Sulfate 9056A 5.31 5.00 106 90-110

Appendix C WAC Program Fourth Quarter 2010 Groundwater Monitoring Report

TRANSALTA CENTRALIA MINING LLC LIMITED PURPOSE LANDFILL

FOURTH QUARTER 2010 GROUNDWATER MONITORING REPORT

FEBRUARY 2011

Prepared by CH2M Hill And TransAlta Centralia Mining LLC

February 11, 2011

This report was developed by TransAlta Centralia Minining LLC, under the supervision of a Geologist licensed in the State of Washington.

Contents

Conte	ents	i
1.	Introduction	1
	1.1Site Description and Landfill Operations	1
	1.2Monitoring Program Summary	1
2.	Monitoring Program Description	3
	2.1 Monitoring Network	3
	2.2Groundwater Level Measurement and Sampling	3
	2.3Leachate Monitoring and Sampling	4
	2.4Sample Handling & Analysis	4
	2.5Field and Laboratory Quality Control	4
3.	Groundwater Monitoring Results	6
	3.1Groundwater Levels and Hydrographs	6
	3.2Groundwater Flow Direction and Hydraulic Gradient	6
	3.3Groundwater Flow Velocity Estimates	7
	3.4Groundwater Quality Results	7
	3.5Comparison to Applicable Groundwater Quality Criteria	8
	3.6Data Quality Assessment	9
4.	Statistical Evaluation	10
	4.1Statistical Analysis Regulatory Requirements	10
	4.2Statistical Analysis Procedures	10
	4.3Statistical Evaluation Results	12
5.	Summary	15
6.	References	17

Tables

Table 2-1	Groundwater Monitoring Network Construction Summary
Table 2-2	Groundwater Analytes, Detection Limits, and Analytical Methods
Table 3-1	Groundwater Levels and Field Parameters
Table 3-2	Groundwater Flow Velocity Estimates
Table 3-3	Groundwater Quality Results and Criteria Comparison
Table 1 1	Significant Trand Summary

Table 4-1Significant Trend Summary

Figures

- Figure 1-1 General Location Map
- Figure 1-2 Site Features and Groundwater Monitoring Network
- Figure 3-1 Groundwater Hydrograph and Precipitation
- Figure 3-2 Groundwater Flow Direction Map
- Figure 3-3 Stiff Diagram

Appendices

- Appendix A Field Sampling Sheets and Laboratory Analytical Data Package
- Appendix B Statistical Analysis Results Descriptive Statistics and Time Series Plots
- Appendix C Statistical Analysis Results Sen's Slope/Mann-Kendall Trend Test

1. Introduction

This report presents results for 4th quarter 2010 groundwater monitoring at the TransAlta Centralia Mining LLC (TCM), Limited Purpose Landfill (LPLF). This report was prepared in accordance with the reporting requirements of Chapter 173-350-500 Washington Administrative Code (WAC). This report summarizes the monitoring results from the 4th quarter 2010 sampling event conducted in December 2010.

1.1 Site Description and Landfill Operations

The LPLF is located near the excavation area for Pit 7 of the Centralia Mine. Figure 1-1 shows the general location of the LPLF. The Pit 7 area has been mined and mine spoils (native overburden removed as part of the coal mining process) backfill was placed in the mined area as mining activities progressed. Figure 1-2 shows the site features and the LPLP groundwater monitoring network.

Construction of Stage 1 of the LPLF began during the summer of 2009 and TCM was authorized to begin waste disposal operations effective October 31, 2009. On December 21, 2009 the Lewis County Environmental Health Department amended the LPLF permit to approve disposal of wastes in Stage 1 area A3a, in addition to areas A1 and A2 which were approved for disposal in the original permit. In 2009 a total of 73,160 cubic yards of waste were disposed in the landfill. Approximately 121,223 cubic yards of wastes were placed in the landfill in 2010, prior to securing the landfill with intermediate cover and drainage control for the winter.

1.2 Monitoring Program Summary

The groundwater monitoring requirements of Chapter *173-350-330(5)* WAC prompted TCM, with assistance by CH2M HILL, to conduct subsurface investigation activities at the LPLF, occurring in two successive field investigation efforts. The first site investigation and monitoring well installation effort occurred in October 2007, which resulted in the drilling of three soil borings (SB-1, SB-2, SB-2B) and installation of four monitoring wells (LPLF 1 through LPLF-4).

In August 2008, CH2M HILL returned to the site to advance four additional borings (LPLF-5 through LPLF-8) and perform hydraulic conductivity tests in the spoils backfill and underlying native Skookumchuck formation. The additional borings were converted into groundwater monitoring wells following the hydraulic testing activities. CH2M HILL also performed hydraulic conductivity testing in all eight completed LPLF wells to measure hydrogeologic parameters in the backfill spoils. Details describing the site conditions (conceptual site model) are presented in Section 2.4 of the 2008 permit application. Based on these field investigation findings and the objectives of the monitoring and reporting requirements of Chapter 173-350-500 WAC, the target hydrostratigraphic unit for LPLF groundwater monitoring is the saturated zone in the backfill soils immediately overlying the Skookumchuck contact.

Section G of the 2009 TransAlta LPLF permit required annual reporting of the groundwater monitoring results based on the Groundwater Monitoring Plan detailed in Section 8 of the permit application (effective date of October 2008). Baseline groundwater monitoring was performed monthly from November 2007 to September 2009. The baseline monitoring period represents site conditions prior to when wastes were placed into the landfill and are used to characterize the distribution of the data for which future monitoring results may be compared to assess if there may be any potential impact from the landfill. Routine detection monitoring has been conducted monthly from October 2009 through December 2010. The site features and the LPLF groundwater monitoring well network are shown in Figure 1-2.

2. Monitoring Program Description

This section describes the monitoring network and sampling activities performed during the 4th quarter 2010 sampling event. Groundwater monitoring is performed to satisfy the requirements of Chapter 173-350-500 WAC, and in accordance with Section B.3 of the 2009 TransAlta LPLF permit application. The groundwater monitoring program is described in Section 8 of the permit application dated October 2008.

2.1 Monitoring Network

Table 2-1 provides a summary of the LPLF groundwater monitoring well network and construction details. The wells were constructed according to WAC 173-160-400, *Requirements for Resource Protection Well Construction*.

The LPLF monitoring network includes eight groundwater wells completed in the target hydrostratigraphic unit consisting of the following wells: LPLF-1, -2, -3, -4, -5, -6, -7, and LPLF-8. These groundwater monitoring locations were selected to provide adequate stratigraphic and spatial representation of shallow groundwater in the LPLF permit area. An underdrain collection system is also part of the monitoring program which was installed to maintain hydraulic separation between the landfill liner system and seasonal high groundwater. Figure 1-2 shows the locations of these monitoring wells and the sub-grade underdrain monitoring location along the southern extent of the LPLF footprint.

A groundwater flow path analysis and hydraulic designation of the LPLF network was developed in the conceptual site model report (Section 2, Siting and Location, LPLF Engineering Design Report, CH2M HILL 2008). Monitoring wells LPLF-1, -4, -5, and -6 are located upgradient of the LPLF, whereas monitoring wells LPLF-2, -3, -7, and -8 are located laterally and down gradient of the LPLF footprint. The sub-grade drain collection system is located down gradient from the LPLF footprint. The sub-grade drain provides an additional down gradient monitoring location to compliment the LPLF well network. The sub-grade drain was constructed with a vertical sampling catch basin beneath a lateral perforated drainage pipe to allow for groundwater measurement and sampling in a manner consistent with the groundwater monitoring wells.

A leachate collection system was also constructed for the LPLF and is monitored for the same parameters and frequency as the groundwater monitoring wells.

2.2 Groundwater Level Measurement and Sampling

Upon arrival at each well location, the well cap is removed and static depth to water (DTW) is measured in each monitoring well prior to purging. Water-level measurements are read to the nearest 0.01 foot, using an electronic water level indicator probe. The DTW is measured from top of casing (TOC) and compared to the expected DTW range. If the two measurements vary considerably, the water level is measured again for verification.

Each monitoring well is purged before sampling to ensure that sampled groundwater represents conditions of the water-bearing unit. Each well is purged using a "low-flow" (minimal drawdown) groundwater sampling procedure. During purging, field parameters

consisting of pH, temperature, and specific conductivity (SC), are measured at approximate five-minute intervals using a multiple parameter in-line monitoring instrument (Horiba U-22 or equivalent). When the pH and SC indicator parameters have stabilized (i.e., when pH within +/- 10 percent and SC is +/- 10 μ S/cm), samples are collected in laboratory-supplied sample containers at a flow rate of approximately 0.1 liter per minute. Field measurement readings and pertinent sampling information are recorded on dedicated field sampling forms.

The underdrain collection system is monitored during each round of groundwater sampling. Since the underdrain system is gravity-fed, the sampling method includes one set of field parameters (that are not required to stabilize), and the grab sample is collected at the end of the drain pipe.

2.3 Leachate Monitoring and Sampling

Leachate monitoring and sampling for the LPLF began in June 2010. Leachate sampling has been conducted monthly from June 2010 to December 2010. TCM collects grab samples at the entrance of the leachate treatment system. Leachate is analyzed for the same parameters and methods as the groundwater monitoring well samples.

2.4 Sample Handling & Analysis

Table 2-2 shows the field and laboratory analytical parameters for the LPLF monitoring program. Groundwater samples are collected in laboratory-supplied containers. All field parameters and sample identification numbers are recorded in the field sheets and then transferred into the master database.

Sample containers are labeled at the time of collection with the unique sample number, date, and time collected. Sample numbers are recorded on the chain-of-custody (COC) along with the time the sample was collected. The COC is sealed in a clear plastic bag and placed in the cooler, either on top of the samples or taped to the inside lid of the cooler. Coolers are sealed securely with clear tape, and COC seals are attached to the lid. The samples are shipped in ice-chilled coolers overnight to Maxxam Analytics International Corporation, located in Burnaby, British Columbia, Canada. Chain-of-custody forms are signed and filled out for each cooler. The COCs are kept as part of the permanent sampling record.

2.5 Field and Laboratory Quality Control

This section describes the field and laboratory quality control that is implemented in accordance with the Groundwater Monitoring Plan (Section 8 of the LPLF Solid Waste Permit Application, dated October 2008).

Field Quality Control:

Water level indicator probes are decontaminated before and after measuring each monitoring well by spraying it with an alconox/deionized water solution, rinsing with deionized water, and then wiping with paper towels. Sampling supplies and sampling bottles are handled using clean (new) disposable nitrile or latex gloves upon arrival at each sampling location.

Wells are purged and sampled using a low-flow peristaltic pump with variable controlled flow rates and dedicated sampling tubing. A dedicated sampling line is used to avoid generating increased turbidity in the sample.

Laboratory Quality Control:

Details of the laboratory quality control are prescribed in the Groundwater Monitoring Plan and are not reiterated herein.

3. Groundwater Monitoring Results

Monitoring results for the 4th quarter (December 2010) sampling event are summarized below.

3.1 Groundwater Levels and Hydrographs

The depth to water and groundwater elevation data for the December 2010 event are summarized in Table 3-1. Groundwater elevations were calculated by subtracting the measured static depth to water from the surveyed top-of-casing elevations relative to the local vertical datum (NGVD29).

Groundwater elevation hydrographs and monthly precipitation data are presented in Figure 3-1. The site hydrograph was developed using monthly water level measurements initiated November 2007 through December 2010. As shown on the site hydrograph, monitoring wells LPLF-1 and LPLF-5 are intermittently dry, particularly during the late summer or fall months. Monitoring wells LPLF-6 and LPLF-7 have been dry since their installation in September 2008. A distinct correlation between precipitation and groundwater elevation changes is not readily apparent. However, there may be a limited correlation between the seasonal low precipitation cycle typically occurring in July through August, which may correspond to the period when some of the wells are dry (i.e., particularly LPLF-1 and -5). There do not appear to be any significant temporal trends in groundwater levels over the period of record (roughly 3 years). The most-recent groundwater elevations measured in December 2010 are consistent with previous observations.

Precipitation data is obtained from TCM's meteorological station located approximately 8,000 feet northwest of the LPLF. The data is collected on hourly intervals but for reporting purposes TCM has summarized the data as monthly totals in Figure 3-1.

3.2 Groundwater Flow Direction and Hydraulic Gradient

The December 2010 groundwater level measurements in the LPLF well network and the interpreted potentiometric surface are presented in Figure 3-2. Based on the interpreted potentiometric surface, the groundwater flow direction in the vicinity of the LPLF is to the southwest.

As illustrated in Figure 3-2, the December 2010 groundwater levels and distances between LPLF-5 and LPLF-8 were used to estimate the hydraulic gradient at 0.070 ft/ft. The southwesterly flow direction and hydraulic gradient measured during the December 2010 event are generally consistent with the hydraulic conditions as presented in Section 2 of the *LPLF Engineering Design Report, Transalta Centrailia Mining LLC* (CH2M HILL, 2008). The groundwater flow direction and hydraulic gradient will be evaluated during each quarterly sampling event.

3.3 Groundwater Flow Velocity Estimates

Groundwater flow velocity estimates can be made using the following formula (obtained from Fetter, 1994):

$$v = \frac{K_{a}i}{n_{e}} * 365$$

where:

: v = estimated groundwater seepage velocity (ft/year) K_a = horizontal hydraulic conductivity (ft/day) i = horizontal hydraulic gradient (ft/ft; dimensionless) n_e = effective porosity (dimensionless)

Table 3-2 presents the estimated groundwater seepage velocity and hydraulic parameters for the December 2010 sampling event. The estimated groundwater seepage velocity of 11 feet/year is relatively slow and correlates well with the fine-grained backfill spoils that comprise the uppermost hydrostratigraphic unit. As described in Section 3.2 (above), the hydraulic gradient was calculated for the December 2010 event, whereas the other hydrogeologic parameters were established in Section 2 of the *LPLF Engineering Design Report*, *Transalta Centrailia Mining LLC* (CH2M HILL, 2008).

3.4 Groundwater Quality Results

Groundwater quality results for the December 2010 monitoring event are summarized in Table 3-3. Field sampling sheets and laboratory analytical reports are presented in Appendix A. As shown in Table 3-3, the groundwater quality results include values for the entire LPLF well network, the underdrain collection system, and leachate. Samples from LPLF-6 and -7 have not been collected since these wells have been dry since their installation in September 2008. Groundwater quality results are organized into field measurements, general chemistry, major ions, and dissolved metals. The analytical parameters and their respective analytical test method are summarized in Table 2-2.

Stiff diagrams for the December 2010 event have been generated using the *Sanitas* software and are shown in Figure 3-3. Stiff diagrams are a graphical method to facilitate interpretation and presentation of the major ions present in a water quality sample. Stiff diagrams are particularly useful to visually compare the chemical composition of water quality among the LPLF well network. Stiff diagrams present the water quality results expressed in milliequivalents per liter, and they account for the ionic charge and formula weight for primary ions. The primary cations include sodium + potassium, calcium, and magnesium; whereas the primary anions include chloride, sulfate, and bicarbonate.

As shown in Figure 3-3, the chemical composition of LPLF-2, -3, and -4 exhibit an overall lower abundance of ions, whereas LPLF-1, -5, -8, and the Underdrain collection system exhibit a relatively higher overall abundance of ions. The Stiff plots illustrate a calcium and sulfate rich groundwater chemistry that is consistent with spoils wells located elsewhere within the mine site. Higher concentrations of calcium and sulfate are observed in both upgradient wells (LPLF-1 and LPLF-1) and downgradient locations (LPLF-8 and Underdrain) in comparison to the levels observed in the leachate. The calcium and sulfate signatures are more indicative of

heterogeneous distribution of spoils materials in the backfill, which appears to be localized in the vicinity of some of the LPLF monitoring locations.

3.5 Comparison to Applicable Groundwater Quality Criteria

Groundwater quality criteria applicable to the *Solid Waste Handling Standards*, Chapter 173-350, WAC, are the maximum contaminant levels (MCL's) as specified in Chapter 173-200, WAC for groundwater in the State of Washington. These MCL criteria for groundwater are also cited in the *TransAlta Centrailia Mining LLC, Solid Waste Handling Facility Permit* (amended on December 30, 2010).

Table 3-3 provides a summary of the December 2010 results and identifies those wellsconstituents which exceed the Chapter 173-200 WAC criteria (exceedances highlighted in bold font). A discussion of the December 2010 MCL exceedances for the LPLF well network and Underdrain collection system (excluding leachate) are provided below.

- Hydrogen Ion Activity (pH criteria/range 6.5-8.5): pH is below the criteria in LPLF-2, -5, LPLF-8, and the Underdrain.
- Total Dissolved Solids (criteria is 500 mg/L): exceeds criteria in all wells, except for LPLF-4.
- Iron (criteria is 0.3 mg/L): exceeds criteria in LPLF-1, -2, -8, and the Underdrain.
- Sulfate (criteria is 250 mg/L): exceeds criteria at all locations, except for LPLF-3 and LPLD-4.
- Arsenic (criteria is 0.00005 mg/L): exceeds the criteria at all locations.
- Manganese (criteria is 0.05 mg/L): exceeds the criteria at all locations.

Exceedances of the groundwater criteria would not be considered to be attributed to a potential landfill source if the following occur:

- If the criteria are exceeded during the background monitoring period (i.e., prior to waste placement into the LPLF cell), and
- If the criteria are exceeded in upgradient monitoring locations, these exceedances would also be expected in downgradient locations and would not be attributed to the landfill.

Based on this decision logic, there are no groundwater quality exceedances of the Chapter 173-200 WAC criteria that are considered to originate from the LPLF. These wells- constituents and the criteria evaluation will be tracked in future sampling events. If necessary, the leachate sampling data may also be compared to the groundwater criteria to help troubleshoot any unexpected results observed in the groundwater monitoring wells. It should be noted that leachate monitoring results compared to water quality criteria had exceedances for pH (but at greater than 8.5, opposite than detected in wells), and selenium is not detected in any of the groundwater monitoring wells. Other criteria were exceeded in the leachate, but at values within the range of and lower than the monitoring well results.

3.6 Data Quality Assessment

Data quality may be assessed by the cation-anion balance and is required under the Chapter 173-350 WAC reporting requirements. A cation-anion balance is performed by converting all the ionic concentrations to units of milliequivalents per liter. The anions and cations are summed separately, and the results are compared. Assuming the waters are generally in equilibrium, if the sum of the cations is not within 10 percent of the sum of the cations, then there may be a problem with the chemical analyses, or there may be one or more ionic species that are present in significant quantities are not being included in the chemical analyses (Fetter, 1994).

Table 3-3 presents the *ion balance* as calculated by the analytical testing laboratory (*Maxxam Analytics International Corporation*) for the December 2010 sampling event. Using the constituent values in milligrams per liter, the ion balance is calculated as follows:

Total Cations (in meq/L) = (NA*0.04350)+(CA*0.04990)+(MG*0.08229)+(K*0.02558)+(FE*0.03581)+(MN*0.03640)+(NH4*0.0 7140)

```
Total Anions (in meq/L) = (CL^{*}0.02821)+(SO4^{*}0.02082)+(CO3^{*}0.03333)+(HCO3^{*}0.01639)+(OH^{*}0.05880)+(PO4^{*}0.09594)+(F^{*}0.05264)+(SIO2^{*}0.02629)+(NO2NO3^{*}0.07140)
```

Ion Balance = Total Cations / Total Anions

As shown in Table 3-3, the ion balance for the December 2010 event was equal to or greater than 0.9 for all wells (equivalent to a percent difference of less than 10 percent). A threshold of 10 percent (or equal to or greater than an ion balance of 0.9) is considered acceptable in consideration that all ionic species many not be accounted for, and that there is some inherent error that may be attributed to field and/or laboratory methods.

4. Statistical Evaluation

This section provides a summary of the statistical evaluation procedures and results for the LPLF groundwater monitoring program. These statistical findings are inclusive of monitoring results collected from November 2007 to the most-recent 4th quarter sampling event concluded in December 2010.

4.1 Statistical Analysis Regulatory Requirements

The primary purpose of statistically analyzing the LPLF monitoring data is to assist with an unbiased identification of any potential impacts to groundwater that may be attributable to a potential leak from the LPLF cell. Statistical analysis of the LPLF water quality results are performed to satisfy the requirements of the limited purpose landfill Solid Waste Handling Standers, per *Chapter 173-350- 500(5) WAC, Groundwater Monitoring – Data Analysis, Notification, and Reporting.* Statistical analyses are also required as stated in the *TransAlta Centralia Mining LLC Limited Purpose Landfill Solid Waste Facility Permit* (dated December 30, 2010), noting that "the Permittee shall perform an appropriate statistical evaluation of all groundwater and sub-grade drain monitoring data capable of revealing any increases over background for parameters and constituents tested." The statistical analyses presented herein are performed to satisfy these regulatory requirements.

4.2 Statistical Analysis Procedures

The statistical analysis approach and procedures for the LPLF groundwater monitoring program were selected to satisfy the regulatory requirements (noted above), and in consideration of the LPLF site conditions as presented in Section 2 of the *LPLF Engineering Design Report, TransAlta Centralia Mining, LLC (CH2M HILL 2008)*. The statistical analyses include the following three categories:

- Descriptive Statistics:
 - Descriptive Statistics (includes baseline date range only)
 - Time-Series Concentration Plots (inclusive of all wells-constituents for the entire period of record)
- Trend Evaluation using the Sen's Slope/Mann-Kendall Method (includes all data)
- Statistical Test for Increase of Conditions over Background (pending exploratory analysis; test method and approach will be presented in the 2010 Annual Report)

A summary of the approach and assumptions for these statistical analyses is provided below. The statistical analyses presented herein have been performed using *Sanitas Statistical Software*, Version 9.1.

Descriptive statistics:

Descriptive statistics include calculated values for mean concentration, standard deviation, variance, minimum and maximum, number of observations (sampling events), and percentage non-detect. Descriptive statistics were calculated for all wells and constituents in the LPLF dataset for the baseline monitoring period (November 2007 to September 2009). This period represents "background" conditions in consideration that it precedes placement of waste into the LPLF cell, thus precluding any potential adverse influence from landfill activities (such as leakage to shallow groundwater). Thus, it is the underlying assumption that the background dataset are not influenced by landfill activities. Descriptive statistics have been calculated for the background period to assist with a comparison to future sampling results (and as required for routine detection monitoring).

In addition, time-series concentration plots are a graphical presentation of the temporal dataset. These plots provide a method to quickly view relative changes in data at a particular well-constituent through time. Time-series concentration plots are useful to display the variability in concentration over time, assist with identification of potential outliers, can be used to assess potential seasonal patterns, and may compliment or cross-check the statistical tests used for the detection or assessment monitoring program (such as trend test or increase of conditions over background, described subsequently).

Trend Evaluation:

A "trend" is the general increase or decrease in observed values of some random variable over time (in our case groundwater concentration for the parameters of interest). A trend analysis can be used to determine the significance of an apparent trend and to estimate the magnitude of that trend.

The Mann-Kendall test for temporal trend and Sen's Slope estimate were used to evaluate the correlation of constituent concentrations through time. The Mann-Kendall test is a nonparametric test, meaning that it does not depend on the assumption of a particular underlying distribution of the dataset (Gilbert, 1987). The test uses only the relative magnitude of data rather than actual values, therefore, the test is well suited for irregular data collection frequencies and/or data gaps, which is often the case in environmental monitoring programs. In addition, non-detects may be included in the analysis and are typically assigned values equal to one-half their method detection limit (Gilbert, 1987).

The Mann-Kendall test for trend procedure was performed on the LPLF dataset. At this time, the trend test approach assumes all well-constituent pairs for the entire period of monitoring from November 2007 through December 2010. Considering the relatively slow groundwater seepage velocity and expectantly slow response to see changes in groundwater quality, the entire dataset was included for the initial test for trend. As the monitoring program matures and the results are routinely evaluated, the trend procedure and applicable date range may be adjusted to include a more recent or fixed window of observations. In addition, in consideration of the site conditions (i.e., fill materials or mine spoils), the groundwater conditions may be expected to exhibit changing conditions over the life of landfill and post-closure monitoring period. Therefore, for the LPLF monitoring program, it will be important to track and consider site-wide changes (i.e., in both upgradient and downgradient locations) while evaluating if there may be a potential adverse influence from landfill activities.

Non-detects were included in the trend test if the number of detects (N) in the given wellconstituent pair met a minimum detection frequency set to 10 percent; well-constituent pairs with a detection frequency less than 10 percent were not evaluated. This approach excludes cases which are predominantly non-detect and are therefore not suitable to assess temporal changes. *Sanitas* uses one-half the method detection limit for instances when non-detects are included in the evaluation. It should also be re-iterated that the well network was installed in two separate phases, therefore, at this time the number of observations for the initial phase of wells is typically 38, whereas the second phase of wells have a total of 17 sampling observations. The test for trend (via Mann-Kendall) may be influenced by the relative number of observations, therefore, the trend results performed for the LPLF dataset for the entire period of monitoring may not have a homogeneous statistical significance. As mentioned above, as the monitoring program matures, a more recent window of observations may be included in future trend analyses, which would result in a consistent number of observations and provide for a more balanced result.

Increase of Conditions over Background:

In compliance with the Chapter 173-350-500 WAC reporting requirements, a statistical procedure will be developed and presented in the 2010 Annual Report to routinely evaluate if an increase (or change) of conditions has occurred in comparison to the background dataset. The statistical test will be selected based on the outcome of an exploratory data evaluation that is currently being performed. The site conceptual model will be used along with the results from the exploratory data analysis to select a detection monitoring procedure (statistical test) that is suitable for the LPLF groundwater monitoring program.

The exploratory data analysis will include an evaluation of the distribution and characteristics of the data, test for seasonality, test for outliers, and consider any temporal or spatial site variability for the parameters of interest. Results from the exploratory data analysis will be used to support weather an inter-well or intra-well comparison is suitable, and then select the appropriate statistical test (such as Control Charts, Prediction Limits, Tolerance Limit, etc). The preferred method will be described and presented to Ecology in the 2010 Annual Report, and upon concurrence, will be included in the amended groundwater monitoring plan.

4.3 Statistical Evaluation Results

This section presents the statistical evaluation results that have been performed on the dataset through the 4th quarter December 2010 sampling event.

Descriptive Statistics:

Descriptive statistics were generated in *Sanitas* for the baseline data collection period (November 2007 to September 2009) and are included in Appendix B. These results represent monthly measurements prior to landfill activities and may be used in comparison to future sampling events to assess for potential impacts to shallow groundwater. The number of observations (N) for the initial phase of wells (LPLF-2, -3, and -4) represent 23 events, whereas the number of observations for the second phase of wells (LPLF-1, -5, and -8) is a reduced number of observations ranging from 6 to 12 events. The Underdrain and leachate collection system are not included in Appendix B since they were installed after the baseline monitoring period.

Time-series concentration plots were also generated using *Sanitas* and are also included in Appendix B (following the descriptive statistics). As noted in Section 4.2, these plots help to

visualize the range and temporal characteristics in the dataset, and may be used to support the subsequent test for trend and/or change of conditions over background (described in sections below). One of the noteworthy characteristics is that well LPLF-5 (background well) shows a significant increase in numerous constituents occurring in summer of 2009. The increase in several parameters believed to represent this well becoming fully saturated and geochemically equilibrating with the primary hydrostratigraphic unit of interest. Therefore, groundwater quality results after the summer of 2009 are believed most representative of the baseline conditions for LPLF-5.

Trend Evaluation Results:

The Mann-K trend results (tabulated results), along with the Sens-Slope estimator (graphic plots) are included in Appendix C. All cases were included for analysis, provided each well-constituent pair met the minimum number of detects set to greater than 10 percent (to exclude cases which were predominantly non-detect). The trend test was performed with a confidence level set to 95 percent (or an alpha of 5 percent), which means that there is a 5 percent chance that the statistical test result is incorrectly assigned.

A summary of the significant trend results (either increasing or decreasing trend) has been compiled in Table 4-1. Of all the cases tested, a total of 78 cases are statistically significant; 30 of which are increasing, and 48 are decreasing at 95 percent confidence level. Of the increasing trends, the majority are from upgradient wells such as LPLF-1, -4, and -5.

Given the relatively recent hydrogeologic depositional setting (spoils backfill) and recent cell construction activities, it is to be expected that trends are occurring site-wide during the active life and post-closure monitoring period. In addition, the trend procedure included data which spans the baseline monitoring period, LPLF construction, and into the initial period of waste placement activities, thus, any trends identified would not be wholly indicative of a potential influence from landfill source materials. Given the relatively early stages of monitoring, combined with relatively slow groundwater seepage velocity, the trend results may be used to compliment the comparison to groundwater criteria (per Section 3.4) and if there may be a potential increase of conditions over background (as described below). Trend results alone, however, should not solely be used to assess potential adverse influences from the landfill.

Increase of Conditions over Background:

As mentioned above, this section is currently a placeholder for future reporting efforts. The statistical procedure to test for an increase of conditions over background will be developed and included in the forthcoming 2010 Annual Report.

5. Summary

Key findings developed from the 4th quarter (December 2010) monitoring results are summarized below.

- Groundwater in the uppermost hydrostratigraphic unit beneath the LPLF landfill generally flows to the southwest. This general flow direction is consistent with previous observations as presented in the 2008 permit application.
- Groundwater quality exceedances of the Chapter 173-200 WAC criteria were observed for the following constituents and locations:
 - Hydrogen Ion Activity (pH criteria/range 6.5-8.5): pH is below the criteria in LPLF-2, -5, LPLF-8, and the Underdrain.
 - Total Dissolved Solids (criteria is 500 mg/L): exceeds criteria in all wells, except for LPLF-4.
 - Iron (criteria is 0.3 mg/L): exceeds criteria in LPLF-1, -2, -8, and the Underdrain.
 - Sulfate (criteria is 250 mg/L): exceeds criteria at all locations, except for LPLF-3 and LPLD-4.
 - Arsenic (criteria is 0.00005 mg/L): exceeds the criteria at all locations.
 - Manganese (criteria is 0.05 mg/L): exceeds the criteria at all locations.

None of these exceedances are attributed to a landfill-related source given they occurred during the background monitoring period and/or in upgradient monitoring wells. These constituents and their concentrations will be tracked in future reporting efforts.

- Trend results from the Mann-Kendall method revealed a number of significant cases, both increasing and decreasing, for the period tested. Trend analyses will be performed on a quarterly basis to compliment other analyses (such as comparison to MCL's, and to support the detection monitoring program).
- An exploratory data analysis is currently in process to assist with selection of a suitable statistical test to evaluate if there has been a change of condition over background. Results from the exploratory analysis will be presented in the 2010 Annual Report. Upon agency concurrence, the recommended statistical approach and methods will be incorporated into the routine LPLF monitoring and reporting program, and documented in the amended groundwater monitoring plan to be submitted by July 1, 2011.
6. References

Fetter, 1994. Applied Hydrogeology, Third Edition.

Gilbert, R.O., 1987. Statistical Methods for Environmental Pollution Monitoring. Van Nostrand Reinhold.

Puls, R.W., and Barcelona, M.J., 1996, *Low-Flow (minimal drawdown) Groundwater Sampling Procedures*, United States Environmental Protection Agency, Groundwater Issue Reference Document No. EPA/540/S-95/504.

Requirements for Resource Protection Well Construction, Chapter 173-160-400, Washington Administrative Code.

*Sanitas*TM Version 9.1. Statistical software used to evaluate groundwater data for RCRA Subtitle C and D facilities.

Solid Waste Handling Standards, Chapter 173-350, Washington Administrative Code.

TransAlta Centralia Mining LLC, Limited Purpose Landfill Solid Waste Permit Application, dated October 2008.

TransAlta Centralia Mining, LLC, Solid Waste Handling Facility Permit, amended on December 30, 2010.

Water Quality Standards for Ground Waters in the State of Washington, Chapter 173-200 Washington Administrative Code.

Tables

TABLE 2-1 Groundwater Monitoring Well Construction Summary

Well	Northing ¹	Easting ¹	Top of Casing	Reference Point Top of Ground Elevation ²	Well Scree Top	n Elevation Bottom	Sand Pacl Top	k Elevation Bottom	Well Depth ³
LPLF-1	520,881.45	1,420,272.06	347.80	344.58	305.58	285.58	309.58	282.58	59
LPLF-2	521,560.80	1,418,888.82	302.26	298.32	283.32	263.32	288.32	260.32	35
LPLF-3	521,923.64	1,419,157.72	295.64	291.69	281.69	261.69	283.69	258.69	30
LPLF-4	522,146.70	1,419,339.00	303.12	299.60	287.6	282.6	290.6	279.6	17
LPLF-5	521,931.70	1,419,921.73	359.90	357.88	349.88	344.88	351.38	343.38	13
LPLF-6	521,408.14	1,420,291.02	358.60	356.39	339.39	334.39	341.39	331.39	22
LPLF-7	521,032.26	1,419,527.54	303.84	301.28	289.28	284.28	291.28	281.28	17
LPLF-8	521,235.37	1,419,233.53	298.75	296.93	279.93	274.93	282.93	273.93	22

Notes:

¹ Washington State Plane Coordinates (NAD27)
 ² Reference point elevation is top ground; all elevations in feet above mean sea level (NGVD29)
 ³ Well depth is feet below ground surface

Analytes ¹	Detection Limits	Analytical Method
Field Determinations		
Temperature	0.1 °C	Electronic Field Probe
pH	0.01 units	SM4500-H+
Specific Conductance	1 μmhos/cm	SM2510B Field Probe
Laboratory Determinations	·	
Total Dissolved Solids	10 mg/l	2540C
Carbonate Alkalinity	2 mg/l	SM2320B
Bicarbonate Alkalinity	2 mg/l	SM2320B
Ammonia	0.1 mg/l	E350.3
Boron	100 µg/l	SW6010
Chloride	0.5 mg/l	300
Fluoride	1.0 mg/l (distilled) or 0.1 mg/l	240.0
	(undistilled)	340.2
Dissolved Sulfate (SO ₄)	0.5 mg/l	300.1
Dissolved Sulfite (SO ₃)	2 mg/l	377.1
Nitrate (NO ₃)	0.1 mg/l	E353.2
Total and Dissolved Arsenic	0.001 mg/l	6020A
Total and Dissolved Barium	0.001 mg/l	6010B
Total and Dissolved Cadmium	0.005 mg/l	6020A
Total and Dissolved Chromium	0.001 mg/l	6010B
Total and Dissolved Calcium	0.05 mg/l	6010B
Total and Dissolved Iron	0.005 mg/l	6010B
Total and Dissolved Lead	0.0005 mg/l	6020A
Total and Dissolved Magnesium	0.05 mg/l	6010B
Total and Dissolved Mercury	0.00005 mg/l	7471A
Total and Dissolved Manganese	0.001 mg/l	6010B
Total and Dissolved Potassium	1 mg/l	6010B
Total and Dissolved Selenium	0.001 mg/l	6020A
Total and Dissolved Silver	0.0001 mg/l	6020A
Total and Dissolved Sodium	0.05 mg/l	6010B
Total and Dissolved Zinc	0.005 mg/l	6010B
Cation/Anion Balance	NA	Calculated

Groundwater Analytes, Detection Limits, and Analytical Methods December 2010

Notes:

The list of analytes are site-specific for the LPLF as presented in the Groundwater Monitoring Plan (Section 8 of the LPLF Solid Waste Permit Application) and includes the parameters as required under Chapter 173-350-500, Washington Administrative Code (WAC). 1.

TABLE 2-2

Table 3-1Groundwater Levels and Field ParametersDecember 2010

		Reference	Depth to	Groundwater	-			
W/oll	Data Sampled	Point (ft)	Water	Elevation	lemp	۳Ц	Conductivity	Commonte
VVEII	Date Sampleu	(11)	(11)	(11)	(\mathbf{U})	pri	(uo/ciii)	Comments
LPLF-1	13 Dec 2010	344.58	55.39	289.19	12.90	6.50	4553	
LPLF-2	13 Dec 2010	298.32	6.11	292.21	11.9	6.4	1212	
LPLF-3	13 Dec 2010	291.69	1.49	290.20	11.9	6.8	1089	
LPLF-4	13 Dec 2010	299.66	2.00	297.66	11.60	7.10	396	
LPLF-5	13 Dec 2010	357.88	10.61	347.27	13.8	6.4	2814	
LPLF-6	13 Dec 2010	356.39	22.00	< 334.39	-	-	-	Dry at time of measurement; value represents well bottom
LPLF-7	13 Dec 2010	301.28	17.00	< 284.28	-	-	-	Dry at time of measurement; value represents well bottom
LPLF-8	13 Dec 2010	296.93	15.69	281.24	13.1	5.2	3351	
Leachate	13 Dec 2010	NA	NA	NA	12.3	9.3	1804	
Underdrain	13 Dec 2010	NA	NA	NA	10.0	6.1	2184	

Notes:

Reference point elevation is top of ground.

All elevations in feet above mean sea level (NGVD29).

TABLE 3-2 Groundwater Flow Velocity Estimates December 2010

Description:	Hydraulic Parameter for LPLF-5 & LPLF-8
Groundwater Elevation (ft) (upgradient well)	347.27
Groundwater Elevation (ft) (downgradient well)	278.43
Distance between wells (ft)	982
Hydraulic Gradient (i)	0.0701
Mean Hydraulic Conductivity (K) (ft/day)	0.111
Groundwater Flow Velocity Est. (ft/year)	11

Groundwater Velocity Equation (Fetter, 1994):

$$v = \frac{K_{a}i}{n_{e}} * 365$$

v - velocity (ft/year)

- K a- mean hydraulic conductivity of LPLF-5 & LPLF-8 (reference Section 2.4.5 of the October 2008 permit application).
- *i* gradient (ft/ft)
- n_e effective porosity (25% assumed value)

TABLE 3-3 Analytical Results and Criteria Comparison December 2010

						Monitori	ng Wells				Other Monito	ring Locations	WAC
Chemical			LPLF-1	LPLF-2	LPLF-3	LPLF-4	LPLF-5	LPLF-6	LPLF-7	LPLF-8	Leachate	Underdrain	173-200
Group	Analyte	Unit	(UG)	(DG)	(DG)	(UG)	(UG)	(UG)	(DG)	(DG)	(DG)	(DG)	Criteria
Field	Temperature	°C	12.9	11.9	11.9	11.6	13.8	na	na	13.1	12.3	10.0	-
Field	Conductivity	uS/cm	4553	1212	1089	396	2814	na	na	3351	1804	2184	-
Field	рН	unit	6.5	6.4	6.8	7.1	6.4	na	na	5.2	9.3	6.1	6.5-8.5
Gen. Chem.	Bicarbonate	mg/L	1300	400	720	300	540	na	na	120	45	230	-
Gen. Chem.	Carbonate	mg/L	<0.5	<0.5	<0.5	<0.5	<0.5	na	na	<0.5	10	<0.5	-
Gen. Chem.	Ammonia (as N)	mg/L	0.42	0.77	0.8	0.1	0.27	na	na	5.3	0.68	1.1	-
Gen. Chem.	Total Dissolved Solids	mg/L	4200	1200	880	310	3400	na	na	3900	1900	2800	500
Gen. Chem.	Total Organic Carbon	mg/L	4.5	<0.5	2	1.6	1.1	na	na	3.3	13.6	3.8	-
Gen. Chem.	Flouride	mg/L	0.12	0.05	0.09	0.24	0.21	na	na	0.12	0.84	0.15	4
Gen. Chem.	Ion Balance	_	0.9	0.92	1	0.96	1.1	an	na	0.98	1	1.1	-
Major Ion	Calcium	mg/L	352	206	55	13	623	na	na	448	249	383	-
Major Ion	Chloride	mg/L	7.4	4	6.3	3.9	7.4	na	na	11	18	9.7	250
Major Ion	Iron	mg/L	4.374	3.17	0.197	0.037	0.28	na	na	487	0.14	12.8	0.3
Major Ion	Magnesium	mg/L	102	13.1	15.5	5.7	163	na	na	169	20.4	149	-
Major Ion	Nitrate (as N)	mg/L	3.46	<0.02	<0.02	0.2	0.04	na	na	<0.02	1.29	<0.02	10
Major Ion	Potassium	mg/L	17.8	5.1	4.8	1.8	8.1	na	na	12.7	45.5	13.7	-
Major Ion	Sodium	mg/L	1090	96	261	97	124	na	na	181	246	170	-
Major Ion	Sulfate	mg/L	2900	660	180	26	1800	na	na	3000	1200	1600	250
Major Ion	Nitrite	mg/L	0.055	<0.005	<0.005	<0.005	<0.005	na	na	0.033	0.12	<0.005	-
Major Ion	Nitrate/Nitrite	mg/L	3.51	<0.02	<0.02	0.2	0.04	na	na	0.05	1.41	<0.02	-
Trace Metal	Arsenic	mg/L	0.0004	0.0002	0.0002	0.0003	0.0003	na	na	0.0092	0.0021	0.0006	0.00005
Trace Metal	Barium	mg/L	0.02	0.043	0.117	0.076	0.028	na	na	0.015	0.132	0.025	1
Trace Metal	Boron	mg/L	0.822	0.157	0.264	0.298	0.194	na	na	0.928	2.54	0.742	-
Trace Metal	Cadmium	mg/L	0.00038	0.00004	0.00006	0.00002	0.0005	na	na	0.00022	0.00015	0.00053	0.01
Trace Metal	Chromium	mg/L	<0.004	<0.001	<0.001	<0.001	<0.002	na	na	<0.002	0.029	<0.001	0.05
Trace Metal	Lead	mg/L	<0.0008	<0.0002	<0.0002	<0.0002	<0.0004	na	na	<0.0004	<0.0002	<0.0002	0.05
Trace Metal	Manganese	mg/L	0.451	1.01	0.864	0.052	5.09	na	na	10.1	0.22	9.64	0.05
Trace Metal	Mercury	mg/L	<0.0008	<0.00002	<0.00002	<0.00002	<0.00004	na	na	<0.00004	<0.00002	<0.00002	0.002
Trace Metal	Selenium	mg/L	<0.0004	<0.0001	<0.0001	<0.0001	<0.0001	na	na	<0.0004	0.0184	0.0001	0.01
Trace Metal	Silver	mg/L	<0.0008	<0.00002	<0.00002	<0.00002	<0.00004	na	na	<0.00004	<0.00002	<0.00002	0.05
Trace Metal	Zinc	mg/L	0.037	0.006	<0.005	<0.005	0.098	na	na	0.57	< 0.005	0.204	5

Notes:

Groundwater samples collected December 13, 2010

LPLF-6 & LPLF-7: Dry Wells

All metals results are dissolved concentrations. Although sample water was field filtered, the laboratory reported iron as total iron.

"UG" = upgradient well; "DG" = downgradient well; (relative to respective landfill area).

Non-detect values preceded with "<" symbol; non-detect value is laboratory reporting limit. "J" = estimated concentration below laboratory reporting limit.

Bold values indicate concentrations at or above established WAC 173-200 criteria.

Ion Balance is calculated by testing laboratory as described in Section 3.6

TABLE 4-1Significant Trend Summary - December 2010

Constituent Name	Well	Slope	Mann-Kendall	Critical Value	Trend	Ν	Alpha
Sulfate (mg/L)	LPLF1 (bg)	327.7	95	49	Yes	17	0.05
Specific Conductance (uS/cm)	LPLF1 (bg)	312.5	74	49	Yes	17	0.05
Bicarbonate (mg/L)	LPLF3	47.1	454	158	Yes	38	0.05
Specific Conductance (uS/cm)	LPLF4 (bg)	41.54	283	158	Yes	38	0.05
Magnesium (mg/L)	Leachate	33.88	18	15	Yes	7	0.05
Bicarbonate (mg/L)	LPLF2	29.8	230	158	Yes	38	0.05
Bicarbonate (mg/L)	LPLF4 (bg)	22.08	307	158	Yes	38	0.05
TDS (mg/L)	LPLF4 (bg)	16.98	182	158	Yes	38	0.05
Dis. Hardness (mg/L)	LPLF3	15.99	262	158	Yes	38	0.05
Magnesium (mg/L)	LPLF1 (bg)	10.58	100	49	Yes	17	0.05
Sodium (mg/L)	LPLF4 (bg)	9.635	322	158	Yes	38	0.05
Potassium (mg/L)	UnderDrain	4.368	46	37	Yes	14	0.05
Calcium (mg/L)	LPLF3	3.185	210	158	Yes	38	0.05
Sulfate (mg/L)	LPLF4 (bg)	2.92	170	158	Yes	38	0.05
Potassium (mg/L)	LPLF5 (bg)	1.984	72	45	Yes	16	0.05
Magnesium (mg/L)	LPLF3	1.867	382	158	Yes	38	0.05
Iron (mg/L)	LPLF1 (bg)	1.726	78	49	Yes	17	0.05
Nitrate (mg/L)	LPLF1 (bg)	0.9106	76	49	Yes	17	0.05
Nitrate-Nitrite (mg/L)	LPLF1 (bg)	0.8838	76	49	Yes	17	0.05
Temperature (Deg C)	LPLF2	0.4184	179	158	Yes	38	0.05
Temperature (Deg C)	LPLF3	0.4011	199	158	Yes	38	0.05
Manganese (mg/L)	LPLF2	0.1938	187	158	Yes	38	0.05
pH (SIU)	LPLF4 (bg)	0.1629	207	158	Yes	38	0.05
Iron (mg/L)	LPLF2	0.118	258	158	Yes	38	0.05
Ammonia (mg/L)	LPLF2	0.1116	206	158	Yes	38	0.05
Nitrate-Nitrite (mg/L)	LPLF4 (bg)	0.05	340	158	Yes	38	0.05
Nitrate (mg/L)	LPLF4 (bg)	0.04932	333	158	Yes	38	0.05
Dis. Boron (mg/L)	LPLF4 (bg)	0.0395	431	158	Yes	38	0.05
Zinc (mg/L)	LPLF1 (bg)	0.008115	40	34	Yes	13	0.05
Cadmium (mg/L)	LPLF5 (bg)	0.0001438	46	45	Yes	16	0.05
Nitrite (mg/L)	LPLF3	0	-202	-158	Yes	38	0.05
Dis. Arsenic (mg/L)	LPLF4 (bg)	-0.00003373	-201	-158	Yes	38	0.05
Cadmium (mg/L)	LPLF2	-0.00006919	-378	-158	Yes	38	0.05
Dis. Arsenic (mg/L)	LPLF2	-0.00008346	-251	-158	Yes	38	0.05
Dis. Arsenic (mg/L)	LPLF3	-0.0001409	-392	-158	Yes	38	0.05
Dis. Arsenic (mg/L)	LPLF1 (bg)	-0.0002761	-85	-49	Yes	17	0.05
Dis. Arsenic (mg/L)	LPLF5 (bg)	-0.0009233	-89	-45	Yes	16	0.05
Cadmium (mg/L)	UnderDrain	-0.001239	-57	-37	Yes	14	0.05
Dis. Barium (mg/L)	LPLF8	-0.004571	-245	-96	Yes	27	0.05
Iron (mg/L)	LPLF3	-0.006581	-166	-158	Yes	38	0.05
Dis. Barium (mg/L)	LPLF2	-0.006677	-200	-158	Yes	38	0.05
Dis. Barium (mg/L)	LPLF1 (bg)	-0.006871	-79	-49	Yes	17	0.05
Fluoride (mg/L)	LPLF2	-0.009432	-256	-158	Yes	38	0.05
Fluoride (mg/L)	LPLF3	-0.0154	-297	-158	Yes	38	0.05
Fluoride (mg/L)	LPLF4 (bg)	-0.0167	-203	-158	Yes	38	0.05
Dis. Barium (mg/L)	LPLF5 (bg)	-0.02484	-101	-45	Yes	16	0.05
Manganese (mg/L)	LPLF4 (bg)	-0.03068	-242	-158	Yes	38	0.05
Fluoride (mg/L)	LPLF1 (bg)	-0.03911	-76	-49	Yes	17	0.05
Nitrate-Nitrite (mg/L)	LPLF8	-0.04363	-103	-96	Yes	27	0.05
Ammonia (mg/L)	LPLF4 (bg)	-0.04807	-236	-158	Yes	38	0.05
Fluoride (mg/L)	LPLF8	-0.05328	-173	-96	Yes	27	0.05

TABLE 4-1Significant Trend Summary - December 2010

Constituent Name	Well	Slope	Mann-Kendall	Critical Value Trend	Ν	Alpha
Iron (mg/L)	LPLF4 (bg)	-0.06011	-417	-158 Yes	38	0.05
pH (SIU)	LPLF3	-0.07249	-159	-158 Yes	38	0.05
Nitrate (mg/L)	LPLF2	-0.09656	-320	-158 Yes	38	0.05
Nitrate-Nitrite (mg/L)	LPLF2	-0.1007	-330	-158 Yes	38	0.05
pH (SIU)	LPLF1 (bg)	-0.1243	-70	-49 Yes	17	0.05
Nitrate (mg/L)	UnderDrain	-0.1792	-43	-37 Yes	14	0.05
Nitrate-Nitrite (mg/L)	UnderDrain	-0.1792	-43	-37 Yes	14	0.05
Nitrate (mg/L)	LPLF3	-0.2129	-290	-158 Yes	38	0.05
TOC (mg/L)	LPLF2	-0.231	-177	-158 Yes	38	0.05
Nitrate-Nitrite (mg/L)	LPLF3	-0.2333	-299	-158 Yes	38	0.05
pH (SIU)	LPLF8	-0.2913	-211	-96 Yes	27	0.05
Zinc (mg/L)	UnderDrain	-0.3333	-48	-37 Yes	14	0.05
Potassium (mg/L)	LPLF2	-0.6278	-313	-158 Yes	38	0.05
Chloride (mg/L)	LPLF1 (bg)	-1.304	-92	-49 Yes	17	0.05
Calcium (mg/L)	LPLF4 (bg)	-1.412	-275	-158 Yes	38	0.05
Chloride (mg/L)	LPLF8	-1.712	-121	-96 Yes	27	0.05
Manganese (mg/L)	LPLF8	-1.77	-126	-96 Yes	27	0.05
TOC (mg/L)	LPLF8	-2.802	-192	-96 Yes	27	0.05
Dis. Hardness (mg/L)	LPLF4 (bg)	-3.206	-237	-158 Yes	38	0.05
Sulfate (mg/L)	LPLF3	-14.78	-164	-158 Yes	38	0.05
Calcium (mg/L)	LPLF2	-19.37	-222	-158 Yes	38	0.05
Calcium (mg/L)	LPLF8	-32.9	-123	-96 Yes	27	0.05
Bicarbonate (mg/L)	LPLF5 (bg)	-96.35	-51	-45 Yes	16	0.05
Dis. Hardness (mg/L)	LPLF8	-116.3	-134	-96 Yes	27	0.05
Iron (mg/L)	LPLF8	-170.5	-186	-96 Yes	27	0.05
Sulfate (mg/L)	LPLF8	-262.6	-102	-96 Yes	27	0.05
Specific Conductance (uS/cm)	LPLF8	-352.3	-112	-96 Yes	27	0.05

NOTE:

Table 4-1 are the significant cases from Mann-Kendall trend test in Appendix C. Positive slope value indicates "increasing trend"; negative slope value indicates "decreasing trend".

Figures

Appendices

Appendix A

Field Data Sheets and Laboratory Analytical Data Packages

FIELD WATER QUALITY SAMPLING AND ANALYSIS

SILEL	DATA/FIEL	DUETERN	MINATION	5					
1.	Project: _	CPI	LE.		2.1.0	9. Temperatur	e (°C):	11	3.2
2.	TCM Site	No: L	PLF	L	_	10. pH (units):	6.52	() 0	.56
3.	Site Type	(GW.DW.S	M.SW): 4	SU		11. Cond. Field	(mhos/cm): 455	3 1 0	1580
4.	Data Type	e: Fle	1			@25℃:	!-	N	
5.	Date:	2,13	,10			12. DO (mg/l):		1	
6.	Time (mil	12.	2el			13.			1.1
7.	Collected	By (Initials	msk	-		14.		1. 600	1.52.73
8.	Confiden	ce: <u>C.D.</u>	rel_			15. Chiorine (m	ng/l): free t	otal	
16.	General	Comments:	Bai	led n	early.	dry a	8:26		
	_				l				
17.	Weather	Conditions:	Sun	breck -	breezy	18. Flow C	onditions: <u>Mon</u>	e	
SITE	CONDITIO	NS / SAMP	LE HAND	LING	1			- 0	
19.	Sampling	Method:	Bai	ter		20. Sampl	e Source: _ Ule	ep	
21.	Quantity	Removed B	efore Sam	npling:		(gal.)	1.		
22.	Static Wa	ater Level or	r Dis charge	e Rate: 5	5.39 (cf	s ((ft.)) 23. Stage:	(ft.)		
24.	Field Inst	ruments:				25. Sampl	e Treatment:	LF10	
FIELD	METHOD NUMBER	INSTRUMENT	CALIBRATION	actual		TYPE	TREATMENT	QUANTITY	CONTAINER TYPE
Temp.	SM 2550	YSI MPS Model 558	1		1	2-White	None	250/12	Als.
рH	SM 4500-H+B	YSIMPS	X			White	Filter, HNO3	120	1-1
Cond.	SM 2510 B	YSI MPS	F	1		White	Unfilter, HNO3		
Dis Ox.	SM 4500-O-G	Model 556 YSI MPS			-	White	Unfiltered, H2SO4	1-1V-	
		Model 556				White	Filtered, Raw	V	
Alkalenty	SM 2320 B	Digital Titrator	N/A			White	Amber/HCL		
Salinity	SM2520 B	YSI MPS Model 556			1	Fecal Coliform	Sodium Thiosulfate		
Chlorine	SM 4500-CL G	HACH	N/A		/				
26.	Remarks					45			
TCG LAB A	ANALYSIS	-						WDOE ACCREDIT	ATION NO. 1025
FREQU				Analysis to			Date Time	Analyzed	Duplicate
	ENCY (D. W.	Q, C, M, P):		be performed Re	sults	A	nalyzed Analyzed	Ву	Valves
DATE R	ENCY (D, W, (0, C, M, P)	·		SS (mg/l)	A /	nalyzed Analyzed	Ву	Valves
	ENCY (D, W, (a, c, m, p) /	·		asults SS (mg/l) Inbidity (NTU)		nalyzed Analyzed	By	Valves
DATE R	ENCY (D, W, (ECEIVED: ECEIVED: VED BY:	2, C, M, P) //:	/		asults		nalyzed Analyzed	By	Valves
DATE R TIME RE RECEIN DATE R	Ency (d, w, (Eceived: Eceived: Ved by:	0, C, M, P)	/		asults		nalyzed Analyzed	By	Valves
DATE R TIME RE RECEIN DATE R TIME RE	ENCY (D, W, (ECEIVED: ECEIVED: VED BY: EVIEWED: EVIEWED:	Q, C, M. P)	/		asults SS (mg/l)		nalyzed Analyzed	By	Valves
DATE R TIME RE RECEIN DATE R TIME RE REVEIN	ENCY (D, W, (ECEIVED: ECEIVED: VED BY: EVIEWED: VED BY:	Q, C, M. P) / /	/		asults SS (mg/l)		Image Analyzed	By	Valves

WHITE - FILE

CANARY - LAB

FIELD WATER QUALITY SAMPLING AND ANALYSIS

SITE	DATA/FIEL	D DETER	MINATION	IS						
1.	Project:	LP	LP			9. Tempera	ature (°C): []	7		
2.	TCM Site	No: L	PLF	2	_	10. pH (un	its): 6	14.		2.77.63
3.	Site Type	GW.DW.	SM,SW): (Fel		11. Cond. F	ield (mhos/cm	1212		
4.	Data Typ	e: fle	f			@25ºC:		1		
5.	Date:	12,13	10			12. DO (mg	/):	L		1.1
6.	Time (mi): 10:	10			13.				1. 6.16
7.	Collected	/ By (Initial:	s): MEK	2		14.	-			1.41.51
8.	Confiden	ce:	oul			15. Chlorine	e (mg/l): free _	tot	al	
16.	General	Comments	:							
17.	Weather	Conditions	:	only	-U	breeze Flor	w Conditions:	Non	e	
SITE	CONDITIO	NS / SAM	PLE HAND	LING						
19	Sampling	Method:	Law	- Plan	Woras	alt.2 20. Sar	mple Source:	Wee	ne -	
21.	2.75 m	L(2m Removed	Before San	npling:	/	(gal.)		,		
22.	Static Wa	ater Level o	or Discharg	e Rate:	. [] (cf	is) (ft.) 23. Sta	ige:	1H (ft.)		12.00
24.	Field Inst	ruments:				25. Sa	mple Treatmer	nt: CPC	FID	
FIELD	METHOD	INSTRUMENT	CALIBRATION	ST	NDARD	TYPE	TREATME			CONTAINER TYPE
Temp.	3M-2550	YSI MPS				Zwhite	None		250/120	plst.
pН	SM 4500-H+B	YSI MPS				White	Filter, HN	03	120	
Cond.	SM 2510 B	YSI MPS		<u></u>		- Vhite	Unfilter, H	NO3	-1/	
Dis Ox.	SM 4500-O-G	YSI MPS		1	-	White	Unfiltered	, H2SO4		
Alkalinity	SM 2320 B	Model 556 HACH	N/A			White	Filtered, F	aw		
Salunity	SM2520 B	Digital Titrator YSI MPS			1-	Fecal Colifo	m Sodium T	hiosulfate		
Chlorine	SM 4500-CL G	Model 556 HACH	N/A		+					
26.	Remarks				1					
TCG					112		-		WDOE	
LABA	NALYSIS			Analysis to			Date	Time	ACCREDIT	Duplicate
FREQUE	NCY (D. W.	9, C. M. P): _		be performed Re	sults		Analyzed	Analyzed	By	Valves
DATE R	ECEIVED:	/	1	т п	SS (mg/l)			47	6.+1	1207
TIME RE	CEIVED:			TU	rbidity (NTU)		_10	117	6.46	1211_
RECEIN	ED BY:				1		15,_	4.7	6.94	RIC
DATE R	EVIEWED:	/	_/	• -			_//			
TIME RE	VIEWED		12	D		1				A States
REVEIN	/ED 8Y:									

FIELD WATER QUALITY SAMPLING AND ANALYSIS

SITE	DATA/FIEI	D DETER	MINATION	IS					and the	
1.	. Project:	-UP	UF		1220	9. Temperat	ure (°C): 1	L.1		
2.	. TCM Site	No: U	PUF	3		10. pH (units	s): 6.7	6		1
3.	. Site Type	GW.DW.	SM.SW):	pu)		11. Cond. Fiel	ld (mhos/cm	1089	-	
4.	. Data Typ		el			@25℃:				
5.	. Date: 1	2,13	5,10			12. DO (mg/l)		1.000		12.94
6.	. Time (mi	1): _9 :	45	4.62		13.				
7.	. Collected	d By (Initial	s): MS	L		14.	-+			
8.	. Confiden	100: _4	oorl			15. Chlorine ((mg/I): free	·>_ to	tal	
16.	. General	Comments	:		1		-			Same and
-	1				(i					11-12-18-2
17.	. Weather	Conditions	: da	ely "	briet	sten late. From	Conditions:	Nor	re	
SITE	CONDITIO	NS / SAM					1200			
19	Sampling	Method:	LONE	Lion	- 1050	saltize same	nle Source:	Wal	l	
21.		Reproved	Bofore Sar	nnling:	p	(nal)				
	300 ml	2min	16		1,49	(yai.)	· M	hA in		190
44.	- Static vv	aver Lever C	Difusciary	e nate	· · · / (61	10 (11.) 20. Stag	e	(10.)	_	1.00
24	Field inc	trumonte:				25 Sam	nle Treatmon	+ IPL	1-10	
24.	. Field Ins	truments:		NT ST		25. Sam	ple Treatmen	it:	110	-
24.	METHOD		CALIBRATIO	N ST actual	ANDARD es messured	25. Sam	ple Treatmen		QUANTITY	
24. FIELD TEST	METHOD NUMBER SM 2550	INSTRUMENT YSI MPS	T CALIBRATIO	N ST actual	ANDARD es measured	25. Sam	TREATMEN		QUANTITY 250/120	CONTAINER TYPE
24. FIELD TEST Temp. pH	METHOD NUMBER SM 2550 SM 4500-H+B	INSTRUMENT YSI MPS Medel 556 YSI MPD Model 556	T CALIBRATIO	N ST actual	ANDARD es messured	25. Sam	TREATMEN		QUANTITY 250/120 120	CONTAINER TYPE
24. FIELD TEST Temp. pH Cond.	METHOD NUMBER SM 2550 SM 4500-H+B SM 2510 B	INSTRUMENT VSI MPS Nedel 556 VSI MPS Model 556 VSI MPS	T CALIBRATIO	N ST actual	ANDARD es meseured	25. Sam	TREATMEN TREATME None Filter, HNC Unfilter, HI	nt	QUANTITY 250/126 120	CONTAINER TYPE
24. FIELD TEST Temp. PH Cond. Dis Ox.	Field Ins METHOD NUMBER SM 2550 SM 4500-H+B SM 2510 B SM 4500-O-G	Truments: INSTRUMENT VSI MPS Recei 556 VSI MPS Model 556 VSI MPS Model 556 VSI MPS	T CALIBRATIO	N ST schuel	ANDARD es measured	25. Sam	TREATME TREATME None Filter, HNC Unfilter, H	nt: <u>UPC</u> NT NO3 , H2SO4	QUANTITY 250/126 120	CONTAINER TYPE
24. FIELD TEST Temp. pH Cond. Dis Ox.	Field Ins METHOD NUMBER SM 2550 SM 4500-H+B SM 2510 B SM 4500-O-G SM 4500-O-G	Truments: INSTRUMENT VSI MPS Madel 556 VSI MPS Model 556 VSI MPS Model 556 HACH	CALIBRATION		ANDARD es measured	25. Sam	TREATME None Filter, HNC Unfilter, HI Unfiltered, Filtered, R	nt: <u>UPC</u> ENT D3 NO3 , H2SO4 Naw	QUANTITY 250/120 120	
24. FIELD TEST. Temp. PH Cond. Dis Ox. Alkalinity	Field Ins METHOD NUMBER SM 2550 SM 4500-M+B SM 2510 B SM 4500-O-G SM 2320 B	truments: INSTRUMENT YSI MPS Tradel 556 YSI MPS Model 556 YSI MPS Model 556 HACH Digital Tanator YSI MPS	T CALIBRATION		ANDARD es messued	25. Sam	TREATME None Filter, HNC Unfilter, HI Unfiltered, Filtered, R Amber/HC	nt: ENT NO3 , H2SO4 kaw CL		
24. FIELD TEST. Temp. pH Cond. Dis Ox. Alkalinity Satinity	Field Ins METHOD NUMBER SM 2550 SM 4500-H+B SM 2510 B SM 2510 B SM 4500-O-G SM 2320 B SM2520 B	truments: INSTRUMENT VSI MPS Nedel 556 VSI MPS Model 556 VSI MPS Model 556 HACH Objetel Trantor VSI MPS Model 556	T CALIBRATION	N ST actual	ANDARD es messued	25. Sam	TREATME None Filter, HNC Unfiltered, Filtered, R Amber/HC Sodium Th	nt: <u>UPC</u> ENT D3 NO3 H2SO4 Haw CL hiosulfate		
24. FIELD TEST. Temp. PH Cond. Dis Ox. Alkalinity Satinity Chlorine	Field Ins: METHOD NUMBER SM 2580 SM 4500-0-G SM 4500-0-G SM 2320 B SM 4500-CL C	truments: INSTRUMENT YSI MPS Model 556 YSI MPS Model 556 YSI MPS Model 556 HACH Digital Timbo YSI MPS Model 556 HACH Digital Timbo Model 558	N/A	N ST actual	ANDARD es messured	25. Sam	Ple Treatmen TREATME None Filter, HNC Unfilter, HNC Unfiltered, Filtered, R Amber/HC Sodium Th	nt:QC		
24. FIELD TESL Temp. pH Cond. Dis Ox. Alkalinity Chlorine 26.	Field Ins METHOD NUMBER SM 2580 SM 4500-0-G SM 4500-0-G SM 2520 B SM 4500-CL C SM 4500-CL C	truments: INSTRUMENT YSI MPS Model 556 YSI MPS Model 556 YSI MPS Model 556 HACH Digital Tarator YSI MPS Model 556 S HACH DPD	N/A		ANDARD	25. Sam	ple Treatmen TREATME None Filter, HNC Unfiltered, Filtered, R Amber/HC Sodium Th	nt:QC		
24. FIELD TESL Temp. pH Cond. Dis Ox. Alkalinity Chlorine 26. TCG	Field Ins METHOD NUMBER SM 2550 SM 4500-H+B SM 2510 B SM 4500-O-G SM 4500-O-G SM 4500-O-G SM 4500-CL C SM 4500-CL C SM 4500-CL C	truments: INSTRUMENT YSI MPS Model 556 YSI MPS Model 556 YSI MPS Model 556 HACH Digital Tantor YSI MPS Model 556 HACH Digital Tantor YSI MPS Model 556 HACH DPD	N/A			25. Sam	ple Treatmen TREATME None Filter, HNC Unfiltered, Filtered, R Amber/HC Sodium Th	nt:QQ ENT D3 NO3 , H2SO4 Naw CL niosulfate		
24. FIELD TESL Temp. pH Cond. Dis Ox. Alkalinity Cond. Dis Ox. Alkalinity Chlorine 26.	Field Ins METHOD NUMBER SM 2550 SM 4500-H+B SM 2510 B SM 4500-O-G SM 2320 B SM 2520 B SM 4500-CL C . Remarks	truments: INSTRUMENT VSI MPS Madel 556 VSI MPS Model 556 VSI MPS Model 556 HACH Digital Timoto VSI MPS Model 558 HACH DPD	N/A	Analysis to	ANDARD	25. Sam	ple Treatmen TREATME None Filter, HNC Unfiltered, HI Unfiltered, R Amber/HC Sodium Th	nt:	VDOE ACCREDIT	ATION NO. 1025
24. FIELD Tenp. PH Cond. Dis Ox. Alkalinity Chlorine 26. TCG FREQU	Field Ins METHOD NUMBER SM 2550 SM 4500-H+B SM 2510 B SM 4500-O-G SM 2320 B SM 2320 B SM 2520 B SM 4500-CL C SM 4500-CL C	Truments: INSTRUMENT VSI MPS Madel 556 VSI MPS Madel 556 VSI MPS Madel 556 HACH Digital Tantor VSI MPS Madel 556 HACH Digital Tantor VSI MPS Madel 556 HACH DPD S: Q, C, M, P):	N/A N/A	Analysis to be performed F	ANDARD	25. Sam	Date Date Date Date Date Date Date Date	It: UPC	WDOE ACCREDIT Analyzed By	CONTAINER TYPE
24. FIELD Tenp. pH Cond. Dis Ox. Alkalinity Salinity Chlorine 26. TCG FREQU DATE R	Field Ins METHOD NUMBER SM 2580 SM 4500-0-G SM 4500-0-G SM 4500-0-G SM 4500-0-G SM 4500-0-C SM 4500-0-G SM 4500-0	truments: INSTRUMENT VSI MPS Madel 556 VSI MPS Model 556 VSI MPS Model 556 HACH Digital Timoto VSI MPS Model 558 HACH DPD		Analysis to be performed F	ANDARD semessured	25. Sam	Date Date Date 75, 2010	It:	WDOE ACCREDIT Analyzed By C '97	ATION NO. 1025
24. FIELD Temp. pH Cond. Dis Ox. Alkalinity Cond. Dis Ox. Alkalinity Cond. Dis Ox. Alkalinity Cond. Dis Ox. Alkalinity Chlorine Z6. FREQU DATE R TIME RI	Field Ins: METHOD NUMBER SM 2580 SM 4500-0-G SM 4500-CL G ANALYSIS DENCY (D. W. RECEIVED: MECEIVED:	truments: INSTRUMENT YSI MPS Madel 556 YSI MPS Model 556 YSI MPS Model 556 HACH Digital Tirrator YSI MPS Model 558 HACH DPD 3: Q, C, M, P): -		Analysis to be performed F	ANDARD est messured est messure	25. Sam	Date Date Date Date Date Date Date Date	It: UPC	WDOE ACCREDIT Analyzed By G, SZ	ATION NO. 1025 Duplicate Valves LOSE
24. FIELD Temp. pH Cond. Dis Ox. Alkalinity Cond. Dis Ox. Alkalinity Cond. Dis Ox. Alkalinity Cond. Dis Ox. Alkalinity Chlorine 26. FREQU DATE R TIME RI RECEIN	Field Ins METHOD NUMBER SM 2580 SM 2580 SM 2510 B SM 4500-0-G SM 4500-0-G SM 2520 B SM 2520 B SM 4500-0-G SM 2520 B SM 2520 B SM 2520 B SM 2520 B SM 2520 B SM 2520 C C C C C C C C C C C C C C	truments: INSTRUMENT YSI MPS Madel 556 YSI MPS Model 556 YSI MPS Model 556 YSI MPS Model 556 HACH Digital Tirrator YSI MPS Model 558 HACH DPD 3: Q, C, M, P): - - - - - - - - - - - - -		Analysis to be performed F	ANDARD est measured est measured	25. Sam	Date Date Analyzed	It: UPC	WDOE ACCREDIT Analyzed By G. 8 2 G. 8 2 G. 77	ATION NO. 1025 Duplicate Valves JOST
24. FIELD Temp. pH Cond. Dis Ox. Alkalinity Cond. Dis Ox. Alkalinity Cond. Dis Ox. Alkalinity Cond. Dis Ox. Alkalinity Chlorine 26. FREQU DATE R TIME RI RECEIV DATE R	Field Ins METHOD NUMBER SM 2580 SM 2580 SM 2580 SM 2510 B SM 2510 B SM 2510 B SM 2520 B SM 2520 B SM 2520 B SM 2520 B SM 2520 CL C C SM 2520 CL C SM 2520	truments: INSTRUMENT YSI MPS Madel 556 YSI MPS Model 556 YSI MPS Model 556 YSI MPS Model 556 HACH Digital Tarator YSI MPS Model 556 HACH DPD 3: Q, C, M, P): - - - - - - - - - - - - -		Analysis to be performed F	ANDARD est measured est measure	25. Sam	Date Analyzed	It: UPC	WDOE ACCREDIT Analyzed By 6,82 6,77	ATION NO. 1025 Duplicate Valves JOST
24. FIELD Temp. pH Cond. Dis Ox. Alkalinity Cohorine 26. TCG FREQU DATE R TIME RI DATE R TIME RI	Field Ins	truments: INSTRUMENT VSI MPS Model 556 VSI MPS Model 556 HACH Digital Timbo VSI MPS Model 556 HACH Digital Timbo DPD 3: Q, C, M, P): -		Analysis to be performed F	ANDARD est measured est measured Results SS (mg/l)	25. Sam	Date Analyzed	It: UPC	WDOE ACCREDIT Analyzed By 6 77 6 8 2 6 77	ATION NO. 1025 Duplicate Valves 1057
24. FIELD Temp. pH Cond. Dis Ox. Alkalinity Colorine 26. TCG FREQU DATE R TIME RI RECEIV DATE R TIME RI REVEIV	Field Ins METHOD NUMBER SM 2530 SM 4500-0-G SM 4500-	truments: INSTRUMENT VSI MPS Model 556 VSI MPS Model 556 HACH Digital Tarator VSI MPS Model 556 HACH Digital Tarator Digital Tarator Q, C, M, P): -		Analysis to be performed F	ANDARD ex measured ex measured	25. Sam	Date Analyzed	It:	WDOE ACCREDIT Analyzed By G 77 G 82 G 77	ATION NO. 1025

SITE	DATA/FIEL	D DETERI	MINATIONS	5				_		
1.	Project:	LPI	·F		20,000	9. Temperatu	re (°C): _[[6	201	
2.	TCM Site	No: _L	PLFL	[_	10. pH (units)	: 714			1.1
3.	Site Type	GW.DW.	SMASW):C	re		11. Cond. Field	i (mhos/cm):	396	1	The state
4.	Data Typ	e: De	1			@25ºC:		2		1.000
5.	Date: 1	2,13	10			12. DO (mg/l):				1000
6.	Time (mil): 9:	15			13.				
7.	Collected	By (Initials	MSK			14.				1.2.1
8.	Confiden	ce: CC	rol			15. Chlorine (n	ng/l): free	tota	al	
16.	General	Comments:							2.21	
-									Sec. 10	14. 19 M
17.	Weather	Conditions	do	udy-	st. br.	CER Flow C	Conditions:	Non	e	
SITE C	ONDITIO	NS / SAMP	PLE HANDI	ING			235			
19.	Sampling	Method:	lo	n Plan	- par	aspltze Sampl	e Source:	wel	l	
21.	Quantity	Removed E	Before Sam	pling:		(gal.)	1			1. 30 1.
-	10 14	-11-72		~	1					
22	Static Wa	ater Level o	r D ischarge	Rate: Z	<u></u> (cf	s) (ft.) 23. Stage	: MA	L (ft.)		1.000
22	Static Wa 300 W Field Inst	ruments:	r Discharge	Rate: 2	<u></u> (c#	23. Stage 25. Samp	:A le Treatment:	L(ft.) CPC	FIO	
22 24 FIELD TEST	Field Inst	ruments:		Rate: Z	(Cf	s)(ft.) 23. Stage 25. Samp TYPE	E Treatment:	(ft.) (FC.) 	F10 QUANTITY	
22 24 FIELD TEST Temp.	Static Wa Static Wa Field Inst METHOD NUMBER SM 2550	ruments:		Rate: 2	ANDARD (Cf	s (ft.) 23. Stage 25. Samp TYPE 2, White	:A le Treatment: TREATMENT None	с <u>(</u> (ft.) <u>срс</u> т	QUANTITY 230/120	CONTAINER TYPE
22 24 FIELD TEST Temp.	Static Wa Static Wa Field Inst METHOD NUMBER SM 2550 SM 4500-H+B	INSTRUMENT YSI MPS Model 556 YSI MPS Model 556	CALIBRATION	Rate: 2/ 	ANDARD as measured (G-90)	TYPE	E Treatment: TREATMENT None Filter, HNO3	(ft.) (ft.) 	QUANTITY 230/120 120	CONTAINER TYPE
22 FIELD TEST Temp. PH Cond.	Static Wa Static Wa Static Wa Field Inst METHOD NUMBER SM 2550 SM 4500-04 SM 2510 B	ILEF LEVELO TUMENTS: INSTRUMENT YSI MPS Model 556 YSI MPS Model 556 YSI MPS Model 556 YSI MPS	CALIBRATION	Rate: 2/ 1 schut 70 (447	(cf	TYPE 23. Stage 25. Sample TYPE 2. White 4. White 4. White 4. White	E Treatment: TREATMENT None Filter, HNO3 Unfilter, HNO Unfiltered, H	(ft.) <u>LPC</u> T D3 2804	QUANTITY 230/120 120	
224 212 TietLD TEST Temp. pH DIS Ox. Alkalinity	Static Wa 300 H Field Inst METHOD NUMBER SM 2550 SM 4500-H+B SM 2510 B SM 4500-O-G SM 4500-O-G SM 2320 B	Iter Level o Iter Level o ruments: INSTRUMENT YSI MPS Model 556 YSI MPS Model 556 YSI MPS Model 556 HACH	CALIBRATION	Rate: 2/ 1 soluti 70 1447	(cf ANDARD es measured (c-90 1447	TYPE 23. Stage 25. Sample 2-White 4 White 4 White 4 White 4 White 4 White 4 White	e Treatment: TREATMENT None Filter, HNO3 Unfilter, HNO3 Unfiltered, H2 Filtered, Raw	(ft.) (ft.) T 2304	QUANTITY 230/120 120	
224 212 TECD TEST Temp. DIS Ox. Alkalinity Salinity	Static Wa Static Wa Static Wa Field Inst METHOD NUMBER SM 2550 SM 4500-H+B SM 2510 B SM 4500-O-G SM 2320 B SM2520 B	ILEF LEVELO TUMENTS: INSTRUMENT YSI MPS Model 556 YSI MPS Model 556 YSI MPS Model 556 HACH Oginal Timstor YSI MPS	CALIBRATION	Rate: 2 1 schui 70 (447	(cf	TYPE 23. Stage 25. Sampl Z-White White White White White White White Fecal Collform	e Treatment: TREATMENT None Filter, HNO3 Unfilter, HNO3 Unfiltered, H2 Filtered, Raw Amber/HCL Sodium Thio:	(ft.) (ft.) T 03 2SO4 v	QUANTITY 238/126 120	
224 212 TIELD TEST Temp. pH DIS Ox. Alkalinity Salinity Chilorine	Static Wa Static Wa Static Wa Field Inst METHOD NUMBER SM 2550 SM 4500-H+B SM 2510 B SM 4500-O-G SM 2320 B SM2520 B SM 4500-CL G	ILEF LEVELO INSTRUMENT VSI MPS Model 556 VSI MPS Model 556 VSI MPS Model 556 Model 556 HACH Optial Tirrator VSI MPS Model 559 HACH Dep	CALIBRATION	Rate: 2 1 schui 70 (447	INDARD es measured Co-90 L 4427	TYPE 23. Stage 25. Sampl Z-White White White White White White Fecal Collform	e Treatment: TREATMENT None Filter, HNO3 Unfilter, HNO3 Unfiltered, H2 Filtered, Raw Amber/HCL Sodium Thio:	(ft.) (ft.) T 2904 v sulfate	QUANTITY 238/120 120 4	
22 22 21 21 21 21 21 21 21 21	Static Wa Static Wa Field Inst METHOD NUMBER SM 2550 SM 4500-0-G SM 2510 B SM 2510 B SM 2520 B SM2520 B SM2520 B SM2520 B SM 4500-CL G	ILEE LEVELO INSTRUMENT YSI MPS Model 556 YSI MPS Model 556 YSI MPS Model 556 HACH Digital Tantor YSI MPS Model 556 HACH Digital Tantor YSI MPS Model 556 HACH Digital S56 HACH DPD	r Discharge n 2 CALIBRATION CALIBRATION V/C LYY 2 N/A N/A	Rate: 2/ (str ecturi 7 0 (447-	C (C#	TYPE 23. Stage 25. Sampl 7YPE 2 White 4 White 4 White 4 White 5 White 5 White 5 Fecal Colliform	le Treatment: TREATMENT None Filter, HNO3 Unfilter, HNC3 Unfiltered, HX Filtered, Raw Amber/HCL Sodium Thios	(ft.) <u>LPC</u> T D3 2SO4 v sulfate	QUANTITY 230/120 120 4	
22 21 21 21 21 21 21 21 21 21	Static Wa Static Wa Static Wa Field Inst METHOD NUMBER SM 2550 SM 4500-0-G SM 2510 B SM 2510 B SM 2520 B SM2220 B SM2220 B SM2220 B SM2220 B SM2220 B SM2220 B SM2220 B SM2220 B	ILEE LEVELO ILEE LEVELO INSTRUMENT YSI MPS Model 556 YSI MPS Model 556 YSI MPS Model 556 HACH Digital Tantor YSI MPS	CALIBRATION	Rate: 2/ (string 70 (447-	C (C#	TYPE 23. Stage 25. Samp 7YPE 2 White 4 White 4 White 4 White 5 White 5 Fecal Colliform	e Treatment: TREATMENT None Filter, HNO3 Unfilter, HNO3 Unfiltered, HX Filtered, Raw Amber/HCL Sodium Thios	(ft.) (ft.) T 2SO4 v sulfate	WDOE	
22 22 2 2 2 2 2 2 2 2 2 2 2	Static Wa Static Wa Static Wa Field Inst METHOD NUMBER SM 2550 SM 4500-0-G SM 2520 B SM 2520 B SM 4500-0-G SM 2520 B SM 4500-0-G SM 2520 B SM 4500-0-G SM 2520 B SM 4500-0-G	ILEE LEVELO ILEE LEVELO INSTRUMENT YSI MPS Model 556 YSI MPS Model 556 HACH Digital Timsor YSI MPS Model 556 HACH Digital S56 HACH DPD	CALIBRATION	Analysis to	C (Cf	TYPE 23. Stage 25. Sample 2 White 2 White 4 White 4 White 4 White - White - White - Fecal Colliform	Le Treatment: TREATMENT None Filter, HNO3 Unfilter, HNO3 Unfiltered, H2 Filtered, Raw Amber/HCL Sodium Thios	(ft.) (ft.) T Sulfate Time	QUANTITY 230/20 120 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	CONTAINER TYPE
22 FIELD TEST Temp. PH DIS OX. Alkalinity Salinity Chicrine 26. TCG LAB A	Static Wa Static Wa	ILEE LEVELO INSTRUMENT YSI MPS Model 556 YSI MPS Model 556 YSI MPS Model 556 HACH Digital Tirrator YSI MPS Model 556 HACH DPD 	r Discharge n 2 CALIBRATION 4 10 10 10 10 10 10 10 10 10 10	Analysis to be performed Ro	Contraction (cf	TYPE 23. Stage 25. Sampl 2. White 2. White 4. White 4. White 4. White 5. Fecal Colliform	Le Treatment: TREATMENT None Filter, HNO3 Unfilter, HNO3 Unfiltered, H2 Filtered, Raw Amber/HCL Sodium Thio:	(ft.) LPC T D3 2SO4 v sulfate Time Analyzed II Z	VDOE ACCREDIT Analyzed By 7,86	ATION NO. 1025
22 FIELD TEST Temp. PH DIS OX. Alkalinity Salinity Chiorine 26. TCG LAB A FREQUE DATE RE	Static Wa Static Wa Field Inst METHOD NUMBER SM 2550 SM 2550 SM 2550 SM 2510 B SM 2510 B SM 2510 B SM 2520 B	Iter Level o Iter Level o ruments: INSTRUMENT YSI MPS Model 556 YSI MPS Model 556 YSI MPS Model 556 HACH Digital Tarator YSI MPS Model 556 HACH DPD	r Discharge n 2 CALIBRATION 4 4 0 14972 N/A N/A	Analysis to be performed Re	<u>о</u> (ся <u>ANDARD</u> <u>es messured</u> <u>Сс-90</u> <u>1447</u> <u>1447</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u>	TYPE 23. Stage 25. Sample 2. White 4. White 4. White 4. White 5. Fecal Collform 4. White 5. Sample 4. White 5. Sample 4. White 5. Sample 4. White 5. Sample 5. S	Le Treatment: TREATMENT None Filter, HNO3 Unfilter, HNO3 Unfiltered, Raw Amber/HCL Sodium Thio: Date matyzed	(ft.) (ft.) 	VDOE ACCREDIT Analyzed By 7.86 7.20	ATION NO. 1025
22 24 24 24 24 24 24 24 24 25 26 26 26 26 26 26 26 26 26 26	Static Wa Static Wa Field Inst METHOD NUMBER SM 2550 SM 2550 SM 2550 SM 2510 B SM 2510 B SM 2510 B SM 2520 B	Iter Level o ruments: INSTRUMENT YSI MPS Model 556 YSI MPS Model 556 YSI MPS Model 556 HACH Digital Transor YSI MPS Model 556 HACH DPD DD DD DD DD DD DD DD DD D	CALIBRATION CALIBRATION 470 1492 N/A N/A	Analysis to be performed Ro	(ся	TYPE 23. Stage 25. Sample 2. White 4. White 4. White 4. White 5. Sample 2. White 4. White 5. Sample 4. White 5. Sample 4. White 5. Sample 4. White 5. Sample 4. White 5. Sample 5.	Le Treatment: TREATMENT None Filter, HNO3 Unfilter, HNO3 Unfiltered, H2 Filtered, Raw Amber/HCL Sodium Thio: Date malyzed S.1	(ft.) (ft.) 	VDOE ACCREDIT Analyzed By 7.86 7.30 7.30	ATION NO. 1025
22 21 21 21 21 21 21 21 21 21	Static Was Field Inst METHOD NUMBER SM 2550 SM 2550 SM 2550 SM 2550 SM 2510 B SM 2510 B SM 2520 B S	Iter Level o ruments: INSTRUMENT YSI MPS Model 556 YSI MPS Model 556 YSI MPS Model 556 HACH Digiti Timsor YSI MPS HACH DPD DD DD DD DD DD DD DD DD D	CALIBRATION	Analysis to be performed Re	C (Cf	s (ft.) 23. Stage 25. Sample 25. Sample 2 White 2 White 4 White 4 White - White - Fecal Colliform	Le Treatment: TREATMENT None Filter, HNO3 Unfiltered, H2 Filtered, Raw Amber/HCL Sodium Thio: Date Malyzed SI	(ft.) LPC T D3 2SO4 v sulfate Time Analyzed <u>IL</u> : <u>3</u> <u>IL</u> : <u>3</u> <u>IL</u> : <u>5</u> (I _ 7	VDOE ACCREDIT Analyzed By 7.86 7.30 7.20	ATION NO. 1025 Duplicate Valves 374 325 376 356
22 22 24 24 24 24 25 26 26 26 26 26 26 26 26 26 26	Static Was Field Inst METHOD NUMBER SM 2550 SM 4500-0-G SM 2510 B SM 4500-0-G SM 2520 B SM 2520 B SM 2520 B SM 4500-0-G SM 2520 B SM 4500-0-G SM 2520 B SM 2520 B SM 4500-0-G SM 2520 B SM 2520	ILER Level o ILER Level o ruments: INSTRUMENT YSI MPS Model 556 YSI MPS Model 556 YSI MPS Model 556 HACH Dojriel Tamor YSI MPS Model 556 HACH DPD DC C, C, M, P): 	CALIBRATION	Analysis to be performed Re	C (cf	s (ft.) 23. Stage 25. Samp 25. Samp 2 White 2 White 4 White 4 White - White - Secal Colliform	TREATMENT None Filter, HNO3 Unfilter, HNO3 Unfiltered, HX Filtered, Raw Amber/HCL Sodium Thios	(ft.) (ft.) 	WDOE ACCREDIT Analyzed By 7.86 7.20 7.20 7.15	ATION NO. 1025 Duplicate Valves 374 376 376
22 22 2 2 2 2 2 2 2 2 2 2 2	Static Was Field Inst METHOD NUMBER SM 2550 SM 4500-0-G SM 2510 B SM 4500-0-G SM 2520 B SM 2520 B SM 2520 B SM 4500-0-G SM 2520 B SM 4500-0-G SM 2520 B SM 4500-0-G SM 2520 B SM 2520	Iter Level o Iter Level o ruments: INSTRUMENT YSI MPS Model 556 YSI MPS Model 556 YSI MPS Model 556 YSI MPS Model 556 HACH Dojriel Tansor YSI MPS Model 556 HACH Dojriel Tansor Q, C, M, P): 1 2 3 4 5 4 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5	CALIBRATION	Analysis to be performed Re True	C (cf	s (ft.) 23. Stage 25. Sample 2 White 2 White 4 White 4 White - White - White - Fecal Colliform	Le Treatment: TREATMENT None Filter, HNO3 Unfilter, HNO3 Unfiltered, HX Filtered, Raw Amber/HCL Sodium Thios Date ale Sodium Thios Solice	(ft.) <u>LPC</u> T D3 2SO4 v sulfate Time Analyzed <u>IL:3</u> <u>IL:3</u> <u>IL:5</u> <u>IL:6</u>	QUANTITY 230/120 120	ATION NO. 1025 Duplicate Valves 374 376 376
22 22 2 2 2 2 2 2 2 2 2 2 2	Static Was Field Inst METHOD NUMBER SM 2550 SM 4500-0-G SM 2510 B SM 4500-0-G SM 2320 B SM 2320 B SM 2520 B SM 4500-0-G SM 2320 B SM 2510 B S	Iter Level o Iter Level o ruments: INSTRUMENT YSI MPS Model 556 YSI MPS Model 556 YSI MPS Model 556 YSI MPS Model 556 HACH Digital Tantor YSI MPS MODE HACH NO	CALIBRATION	Analysis to be performed RC True C True C Tr	C (cf	s (ft.) 23. Stage 25. Sample 2 White 2 White 4 White 4 White - White - Fecal Collform	Le Treatment: TREATMENT None Filter, HNO3 Unfilter, HNO3 Unfiltered, HX Filtered, Raw Amber/HCL Sodium Thios Date malyzed S.I	(ft.) <u>L</u> PC T D3 2SO4 v sulfate Time Analyzed <u>IL</u> : <u>3</u> <u>IL</u> : <u>3</u> <u>IL</u> : <u>5</u> <u>IL</u> : <u>6</u>	QUANTITY 230/20 120 120 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	ATION NO. 1025 Duplicate Valves 374 376 376

SITE C	DATA/FIEL	D DETERM	INATION	s							
1.	Project:	(-PL	E,		9. Temperatu	re (°С): <u>13-8</u>	2			
2.	. TCM Site No:					10. pH (units)	10. pH (units): 6 - 4.2				
3.	3. Site Type (GW.DW.SM.SW):					11. Cond. Field	11. Cond. Field (mhos/craster 1/2				
4.	4. Data Type: _ Hed					@25ºC:	@25°C:				
5.	5. Date: 12,13,10					12. DO (mg/l):	12. DO (mg/l):				
6.	Time (mil): 12: 45					13.	13				
7.	Collected By (Initials):					14.	14.				
8.	8. Confidence: total										
16.	16. General Comments: Leset tube to Bou										
_				-				-			
17.	Weather	Conditions:	Sun	break	us · ca	In 18. Flow C	Conditions:	nen	e		
SITE C	ONDITIO	NS / SAMP	LE HAND	LING							
19. 21 22 24.	Sampling Quantity (75 m Static Wa Field Inst	Method: Removed B C VVN ther Level or ruments:	efore Sam	pling:	-1641	(gal.) (gbg(ft.) 23. Stage 25. Samp	e Source: ://A le Treatment:	-(tt.) LPLF	=10		
FIELD	METHOD	INSTRUMENT	CALIBRATION	actual	STANDARD	TYPE	TREATMENT		OUANTITY	CONTAINER TYPE	
Temp.	SM 2550	YSI MPS				Zwhite	None		250/120	VIST	
pH	SM 4500-H+B	Model 556 YSI MPS				White	Filter, HNO3 Unfilter, HNO3		ite	1	
	-	Model 556	/			White			V/		
Cond.	SM 2510 8	YSLMPS		1	- marine						
Dis Ox.	SM 4500-O-G	YSI MPS				vvriite	Unintered, H2504				
Alkalinty	SM 2320 8	Model 558 HACH				white	Filtered, Haw				
		Digital Titrator	N/A	1		White	Amber/HCL				
Salinity	SM2520 B	YSI MPS Model 556				Fecal Coliform	Sodium Thiosulfate				
Chlorine	SM 4500-CL G	HACH OPD	N/A	11	1			-			
26.	Remarks			-		/					
TCG									WDOE		
LADA	NALTSIS			Analysis to			Date	Time	ACCHEDIT	ATION NO. 1025	
FREQUE	NCY (D. W. C	Q, C, M, P):		be performe	d Results	A	nalyzed Ar	naiyzed	By	Valves	
DATE RE	CEIVED:			0	TSS (mg/l)		<u>)</u>	3.4	0.4	Ric	
TIME RE	CEIVED:				Turbidity (NTU)		to the	58	6.9	02827	
						l	<u>-'- Ke</u>	2.5	la 4 x	28/6	
DATE RE	EVIEWED:	/	/			/				-	
	VIEWED					,	,				

REVEIWED BY: TA#59 REV 6/04

WHITE - FILE

CANARY - LAB

1_
1. Project: QLE 9. Temperature (°C): 2. TCM Sile No: LPLES 10. pH (units): 3. Sile Type (SIM DW.SM SW): SC 11. Cond. Field (mhos/cm): 4. Data Type: QLE 9. Temperature (°C): 9. Temperature (°C): 5. Data: L/L: 12. DO (mg/l): 9. Temperature (°C): 6. Time (mi): S: Y 13. 7. Outcaded By (initial): MSH 14. 8. Considence: GOZZ 15. Choinne (mg/l) thee 10. total 16. General Comments: D Te - UAM Scatticus Fallow 17. Weather Conditions: L/L: L/L: L/L: L/L: L/L: 18. General Comments: L/L: Scatticus L/L: L/L: L/L: L/L: 19. Sampling Method: L/L:	SITE	DATA/FIEL	D DETER		IS	FIELL	D WATER QUALITY	SAMPLING A	AND ANALYSI	S	
2. TCM Sile No: LPLES	1.	Project:	UPI	LF			9. Temperatu	Jre (°C):	يلد في		
3. Site Type (GWLDMSNV): SW 11. Cond. Flaid (mhos/cm):	2.	TCM Site	No: L	PLE	5	-	10. pH (units	»	¥		
4. Data Type: EM #25°C:	3.	Site Type	GW.DW.S	SM.SW):	sa		11. Cond. Field	d (mhos/cm):	1	-	
5. Date: 12-113-114 12. DO (mg/): 6. Time (mi): £: 45 13 7. Collected By (initials): MS/L 8. Confidence:	4.	Data Typ	e: le	1			@25℃: _)		
6. Time (mi): £: 45 13. 7. Collected By (Initials): MSH 14. 8. Confidence:	5.	Date: 1	2,13	10			12. DO (mg/l):		_/		
7. Collected By (Initials): MUSH 14. 8. Confidence:	6.	Time (mil	1): 8:0	45			13.				
8. Confidence: 40221 15. Chlorine (mg/k_free	7.	Collected	d By (Initials	s): MS/	2		14.	1			
16. General Comments: Need to re-usem subtract tabe when yes 17. Weather Conditions: LOULY -Ut briefledgis Flow Conditions: Dere 18. Sampling Method: Ubbeal -Societies Dere 19. Sampling Method: Ubbeal -Societies 20. Sample Source: Utility 21. Quantity Removed Before Sampling: (gal.) (gal.) 22. Static Water Level or Directorge-Bate: 10. G (tog (tt.)) 23. Stage: MA 24. Field Instruments: 25. Sample Treatment MA 24. Field Instruments: 25. Sample Treatment OUANTITY DONTAINER TYPE 24. Field Instruments: 25. Sample Treatment OUANTITY DONTAINER TYPE 24. Field Instruments: 25. Sample Treatment OUANTITY DONTAINER TYPE 24. Field Instruments: 25. Sample Treatment OUANTITY DONTAINER TYPE 25. Sample Treatment: White Nore Filler, FINO3 26. Massee White White Filler, FINO3 White 27. Massee Massee NA Bodium Triosultate Woole 28. Remarks: Muture Augustor Bodium Triosultate Muture Augustor Succeree 28. Remarks: Muture August	8.	Confiden	ice: _9	ood			15. Chlorine (I	mg/I) free	to	tal	
Number Number Number Number Number Number 17. Weather Conditions:	16.	General	Comments:	:		and the second				_	
17. Weather Conditions:	_	_	NI4	eed	+Z) Te-Uo	Amp 6	utic	n fa	be u	her the
TTE CONDITIONS / SAMPLE HANDLING 19. Sampling Method: // L.B/LCM/	17.	Weather	Conditions:	- cli	male	-Utibr	eezens. Flow	Conditions:	Non	2	,
ITE CONDITIONS / SAMPLE HANDLING 19. Sampling Method: // bblcal - Socuralar 20. Sample Source: 21. Quantity Removed Before Sampling: (gal.) 22. Static Water Lovel or Directarge Bate: (O.G. (otgo (tr.) 23. Stage:(tr.) 24. Field Instruments: 25. Sample Treatment:					/						10
19. Sampling Method:	ITE C	CONDITIO	NS / SAMF	PLE HAND	DLING	1					V
21. Quantity Removed Before Sampling:	19.	Sampling	Method:	Vi	Blia	-Sound	in_ 20. Samp	le Source:	We	el	
22. Static Water Level or Bischarge Bate: IO.G (rb.) 23. Stage: Image: Constraint of the state o	21.	Quantity	Removed E	Before Sar	npling:	Ø	(gal.)		/		
24. Field Instruments: 25. Sample Treatment:	22	Static Wa	ater Level o	r Dischare	- Dato:	-10,61	(It) 23 Stan	·	IA (#)	7	
24. Field Instruments: 25. Sample Treatment: // IED MUREED INSTRUMENT CAUBRATION INTERPORT OUANTITY CONTAINER TYPE IED MUREED INSTRUMENT CAUBRATION INTERPORT OUANTITY CONTAINER TYPE IED MUREED INSTRUMENT CAUBRATION INTERPORT OUANTITY CONTAINER TYPE IED MUREED INSTRUMENT CAUBRATION INTERPORT OUANTITY CONTAINER TYPE IED MUREED INSTRUMENT INAGE 556 INTERPORT OUANTITY CONTAINER TYPE IED MUREED INGE 556 INTERPORT White Infilter, HNO3 INTERPORT IED MUREED INGE 556 INGE 556 INGE 556 INGE 556 INGE 556 INGE 556 IED MUREED MAGE 556 INGE 556 <td< td=""><td>22.</td><td>Static wa</td><td></td><td>Discussion</td><td></td><td>10.00 10</td><td>(II.) 23. Stage</td><td></td><td><u>v </u></td><td>1A.</td><td></td></td<>	22.	Static wa		Discussion		10.00 10	(II.) 23. Stage		<u>v </u>	1A.	
EED METHOD ANSTRUMENT CAUBRATION BIARDARD 0 GM 350 V01 M95 es mesure White None 0 GM 350 V01 M95 white White None SM 4500 H4 V01 M95 white White White White V01 M95 White White White White White V01 M95 White White White Unfilter, HNO3 White V01 M95 Wass 56 White White Unfiltered, H2SO4 White V01 M95 Macht 566 White White White Harder H2SO4 V01 M95 Macht 566 White Pecal Coliform Sodium Thiosulfate White V01 M95 Macht 566 White Pecal Coliform Sodium Thiosulfate White 266 Remarks: Macht 506 Bark 40 Bark 40 Duplicate 200 Macht 506 Date Tme Analyzed By Valwes 26 Remark	24.	Field Inst	truments:				25. Samp	sle Treatment:		111	
Masso Visites None SM 3500 H Visites White SM 3500 H Visites SM 3500 H Visites <tr< td=""><td>TEST</td><td>NUMBER</td><td>INSTRUMENT</td><td>CALIBRATIO</td><td>actua</td><td>STANDARD as measured</td><td>ТҮРЕ</td><td>TREATMEN</td><td>т</td><td>QUANTITY</td><td>CONTAINER TYPE</td></tr<>	TEST	NUMBER	INSTRUMENT	CALIBRATIO	actua	STANDARD as measured	ТҮРЕ	TREATMEN	т	QUANTITY	CONTAINER TYPE
SM 4500-HB VSI MPS VA SM 2510B VSI MPS White Model 550 White Model 561 White White White Wassond WA Model 561 WA WB Second 6 Model 561 WA Model 561 WA Model 561 WA Model 561 WA Model 561 N/A Model 561 WA Model 561 WA Model 561 WA Model 562 WA </td <td>np.</td> <td>SM 2550</td> <td>YSI MPS Model 556</td> <td></td> <td></td> <td></td> <td>White</td> <td>None</td> <td></td> <td></td> <td></td>	np.	SM 2550	YSI MPS Model 556				White	None			
bit SW 2510B Vor MPS cx SW 2510B Vor MPS cx SW 4500-C0 Virite minuty SW 2200B Vor MPS Model S48 N/A White minuty SW 2200B Vor MPS Model S48 N/A White minuty SW 2200B Vor MPS Model S48 N/A Pecial Colliform Software Pecial Colliform Sodium Thiosulfate Software N/A Pecial Colliform Sodium Thiosulfate Software N/A Pecial Colliform Sodium Thiosulfate Software N/A Pecial Colliform Sodium Thiosulfate Software Malayzed Analyzed Analyzed AB ANALYSIS Model Rosults Analyzed Analyzed <td></td> <td>SM 4500-H+B</td> <td>YSI MPS</td> <td>/</td> <td>1</td> <td></td> <td>White</td> <td>Filter, HNO3</td> <td>1</td> <td></td> <td></td>		SM 4500-H+B	YSI MPS	/	1		White	Filter, HNO3	1		
Oc. SM 4500-00 Model 556 Model 556 Model 556 Ore SM 4500-01 G Model 556 Model 556 Ore SM 4500-01 G PDD N/A PDD N/A PDD Model 556 Ore SM 4500-01 G PDD N/A PDD P/A PDD P/A PDD <td< td=""><td>vd.</td><td>SM 2510 B</td><td>YSI MPS</td><td>F</td><td></td><td></td><td></td><td>Unfilter, HNC</td><td>03</td><td></td><td></td></td<>	vd.	SM 2510 B	YSI MPS	F				Unfilter, HNC	03		
Model 550 White Filtered, Raw Amber/Y SM 2200 B HACH N/A Depai Transer N/A White Amber/HCL SM 2200 B Y81 MPS Model 556 Model 556 Model 556 More 556 Model 556 Model 556 Model 556 26. Remarks: McLQuard Lepth & B:79 26 Analysis to Date EQUENCY (D.W, Q. C. M. P): be performed Rosuits Analyzed Analyzed Analyzed Analyzed Analyzed Analyzed As Received:	Ox.	SM 4500-O-G	VSI MPS	-			White	Unfiltered, H	12804		
Image: States Definition of the states N/A	linity	SM 2320 B	Model 556				White	Filtered, Ray	W		
Imply SW2200 B Model 556 Imply SW4500 CL C HACH N/A 26. Remarks: MELGUEUS Lefth (2) 16.79 Suspect Custer Louid Imply 26. Remarks: MELGUEUS Lefth (2) 16.79 Suspect Custer Louid Imply Subject <		Com Edge D	Digital Titrator	N/A			White	Amber/HCL			<
SM 4500CL G HACH N/A 26. Remarks: McMatrix Applic B:79 - Suspect water land 73 below and 7 26. Remarks: McMatrix Applic B:79 - Suspect water land 73 below and 7 26. Remarks: McMatrix Applic B:79 - Suspect water land 73 below and 7 26. Remarks: McMatrix Applic B:79 - Suspect water land 73 below and 7 26. Remarks: McMatrix Applic B:79 - Suspect water land 73 below and 7 26. Remarks: McMatrix Applic B:79 - Suspect water land 73 below and 7 26. Remarks: McMatrix Applic B:79 - Suspect water land 73 below and 7 27. Banalysis to Date 28. Analyzed Analyzed 29. Performed Rosults Analyzed 29. TE RECEIVED: 1 20. Twiddity (NTU) 1 20. Eclived BY: 1 20. Te Reviewed: 1 20. Me Reviewed: 1 20. Me Reviewed: 1 20. Me Reviewed: 1 20. Me Reviewed: 1	nity	SM2520 B	Model 556				Fecal Coliform	Sodium Thic	sulfate		
26. Remarks: McCourse lepths B:79 Suspect courses level -3 below and of analysis 26. Remarks: Multiple B:79 Suspect courses level -3 below and of analysis 26. Remarks: Multiple B:79 Suspect courses level -3 below and of analysis 26. Remarks: Multiple Analysis to be performed Rosults Date Time Analyzed Duplicate 26. Begetree:	orine	SM 4500-CL G	HACH	N/A			1				
CG WDOE AD ANALYSIS Analysis to EQUENCY (D. W. Q. C. M. P): Analysis to be performed Rosults Analyzed Analyzed By Valves	26.	Remarks	mea	Gurad	1 Ler	the 18.74	7 - Susa	at we	ster la.	d 3 be	low and of
AB ANALYSIS ACCREDITATION NO. 1025 Analysis to be performed Rosults Date Analyzed Time Analyzed Analyzed By Duplicate Valves ITE RECEIVED: / / / / / / ITE RECEIVED: / TSS (mg/l) / / / / ITE RECEIVED: / TSS (mg/l) / / / / ITE RECEIVED: / Turbidity (NTU) / / / / ITE REVIEWED: / / / / / / / ITE REVIEWED: / / / / / / / / ITE REVIEWED: / <td>CG</td> <td></td> <td>II</td> <td></td> <td></td> <td><u> </u></td> <td></td> <td></td> <td></td> <td>WDOE</td> <td></td>	CG		II			<u> </u>				WDOE	
Analysis to Date Time Analyzed Duplicate NEQUENCY (D, W; Q, C, M, P): be performed Results Analyzed Analyzed By Valves ITE RECEIVED: / / TSS (mg/l) //// ////	ABA	NALYSIS	TUDE	1						ACCREDIT	ATION NO. 1025
NTE RECEIVED: / / /	EQUE	ENCY (D. W.	Q, C, M, P):		Analysis to be performe	ad Results		Date Analyzed	Time Analyzed	Analyzed By	Duplicate Valves
ME RECEIVED:	TE R	ECEIVED:		1		TSS (mg/l)		/ <u></u> /			
	ME RE	CEIVED:				Turbidity (NTU)		1_1			
	ECEIV	ED BY:					<u> </u>	<i>I</i>		~~~	-
VEIWED:: [] / /:	TE RE		/	1				//			
	ME RE	VIEWED:		1				r		_	
	VEIW	ED BY:	100					1_1_		_	

CANARY - LAB

ATA/EIEI D DETED

FIELD WATER QUALITY SAMPLING AND ANALYSIS

1. Project:	9. Temperature (°C):
2. TCM Site No:	10. pH (units):
3. Site Type (GW.DW.SM.SW):	11. Cond. Field (mhos/cm):
4. Data Type: Elg	@25°C:
5. Date: 12/13/19	12. DO (mg/l):
6. Time (mil): <u>8</u> :35	13.
7. Collected By (Initials): MSIL	14
3. Confidence: GOTOL	15. Chlorine (mg/l): free total
6. General Comments: Drb Well	and the second
1, 1	and the second
17. Weather Conditions: (loudy - Lt. br	elle 18. Flow Conditions: None

SITE CONDITIONS / SAMPLE HANDLING

21. 22. 24.	Quantity I Static Wa Field Inst	Removed B ter Level or	efore Sampli	ing: Rate:	30 10	(gal.) (ft.) 23. Stage 25. Samp	e Treatment:	MA	-
FIELD	METHOD NUMBER	INSTRUMENT	CALIBRATION	STAN	OARD as measured	TYPE	TREATMENT	QUANTITY	CONTAINER TYPE
Temp.	SM 2550	YSI MPS				White	None		
рH	SM 4500-H+B	YSI MPS Model 556				White	Filter, HNO3		
Cond.	SM 2510 B	YSI MPS				White	Unfilter, HNO3	2 9 9 9	
Dis. Ox.	SM 4500-O-G	YSI MPS Model 556				White	Filtered, Raw		
Alkalinity	SM 2320 B	HACH Digital Titrator	N/A			White	Amber/HCL		
Salinity	SM2520 B	YSI MPS				Fecal Coliform	Sodium Thiosulfate	-	
Chlorine	SM 4500-CL G	HACH	N/A						
26.	Remarks:					•	<u></u>		
TCG								WDOE	

LAB ANALYSIS	_		And the second sec		ACCREDITA	TION NO. 1025	;
FREQUENCY (D, W, Q, C, M, P):	Analysis to be performed	Results	Date Analyzed	Time Analyzed	Analyzed By	Duplicate Valves	
		TSS (mg/l)	//				
TIME RECEIVED::		Turbidity (NTU)					
RECEIVED BY:							
DATE REVIEWED://			//				
TIME REVIEWED:;;			//				
REVEIWED BY:			//	<u> </u>			
TA#59 REV 6/04		WHITE - FILE	CANARY - LAB				-

FIELD WATER O	QUALITY SAMPL	ING AND ANALYSIS
---------------	---------------	------------------

SITE E	DATA/FIEL	D DETERN	INATIONS	5	ALC: NOT		a state of	and the second second	1.1. (51.61)			
1.	Project:	LPI	E_	_		9. Temperatu	re (°C):		X 44			
2.	TCM Site	No: L	DLE	7		10. pH (units)	:	_				
3.	Site Type	GW.DW.S	MSW)	W		11. Cond. Field (mhos.cm):						
4.	Data Typ	e: le	1			@25°C:						
5.	Date: 1	2113	10			12. DO (mg/l):						
6.	Time (mi): 10 :	15			13.	/					
7.	Collected	By (Initials)	: M615	-		14.						
8.	Confiden	ce: _G	and			15. Chlorine (ng/l): free	tot	al			
16.	General	Comments:							the second second			
	-		and was	in a state	Dryu	sell	-			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		
17.	Weather	Conditions:	cla	uly-	- calm	18. Flow 0	Conditions: _	None)			
-		1.111	oc	1								
SITE C	CONDITIO	NS / SAMP		LING		1 6			7_	den al metio		
19.	Sampling	Method:	U	1344	1-sand	er 20. Samp	le Source:	Well	/	A section find the		
21.	Quantity	Removed B	efore Sam	pling:	Ø	(gal.)		11.				
22.	Static Wa	ater Level or	Discharge	Rate:	-16.76 (cf	s) (ft.) 23. Stage	n	HH (ft.)	1			
24.	Field Inst	truments:				25. Samp	le Treatment:	-N	K			
FIELD	METHOD	INSTRUMENT	CALIBRATION	actur	STANDARD	TYPE	TREATMEN	NT	QUANTITY	CONTAINER TYPE		
Temp.	SM 2550	YSI MPS				White	None					
oH	SM 4500-H+B	Model 556 YSI MPS			_	White	Filter, HNO	3				
		Model 556	/			White	Unfilter HN	03	1.			
Cond.	SM 2510 8	YSI MPS Model 556				White	Tiniterod I	42504				
Dis. Ox.	SM 4500-O-G	YSI MPS					Cillered De	12004	-			
Alkalinity	SM 2320 8	Model 556					Filtered, Ha	W				
		Digital Titrator	N/A	3	-	White	Amber/HCL		1			
Salinity	SM2520 B	YSI MPS				Fecal Coliform	Sodium Thi	osulfate				
Chlorine	SM 4500-CL G	HACH	N/A		1.000					<u> </u>		
	Demode	DPD					-	P				
20.	Hemarks								WDOF			
LAB A	NALYSIS					1. 14			ACCREDIT	ATION NO. 1025		
FREQUE	ENCY (D. W.	Q, C, M, P):		Analysis to be perform	ed Results	,	Date Analyzed	Time Analyzed	Analyzed By	Duplicate Valves		
DATE RI	ECEIVED: _	/	/		TSS (mg/l)		//	:				
	ECEIVED:	i			Turbidity (NTU)		1_1_	~				
RECEIV	/ED BY:						I <u></u> I					
DATE R	EVIEWED: _	/	/				//	;		1		
TIME RE	EVIEWED: _						//	;				
REVEIW	/ED 8Y:		_				//	;				

TA#59 REV 6/04

WHITE - FILE

CANARY - LAB

FIELD WATER QUALITY SAMPLI	ING AND ANALYSIS
----------------------------	------------------

SITE	DATA/FIEL	D DETERM	AINATIONS				the second s					
1.	Project:	LP	LF_		1.1	9. Temperatu	re (°C): <u>13</u> .1					
2.	TCM Site	No: LF	LF8		_	10. pH (units)	516	and the second				
3.	Site Type	GW.DW.S	SM,SW): G	W		11. Cond. Field (mhos/cm): 3351						
4.	Data Typ	e: The	l			@25°C:						
5.	Date:	2,13	10			12. DO (mg/l):						
6.	Time (mil	12.0	20			13.						
7.	Collected	By (Initials	my			14.		AL AND MELLS				
8.	Confiden	ce: GC	roul			15. Chlorine (n	ng/I): free	total				
16.	General	Comments:										
10.	Gonora	Sommerie.										
17.	Weather	Conditions:	Ein	6 Teale	- 6t. c	TFIZZELOW C	Conditions:	re				
SITE	CONDITIO	NS / SAMP	LE HANDI	JNG			1.1.1.1.1.1.1.1	Billion Burther County				
			Tar	Class	horid		1000	30				
19.	Bampling	Method:	Van .	facur .	PARASIM	20. Sampl	le Source:	<u>x</u>				
21.	Quantity	Removed E	selore Sam	pling:		(gal.)		the second second				
22	Static Wa	ater Level of	Discharge	Bate	5.69 mat	State	. NIA (11)	1700 150 150				
			go			Le. oldge		EIN				
24.	Field Inst	ruments:				25. Sampl	le Treatment:	<u> // /0</u>				
FIELD	NUMBER	INSTRUMENT	CALIBRATION	sta	AS measured	TYPE	TREATMENT	QUANTITY CONTAINER TYPE				
Temp.	SM 2550	YSI MPS Model 558				2White	None	250/120 plst.				
рН	SM 4500-H+B	YSHMPS	/			1 White	Filter, HNO3	120				
Cond.	SM 2510 B	YSI MPS	×			1_ White	Unfilter, HNO3					
Dis Ox.	SM 4500-O-G	Model 556 YSI MPS				L White	Unfiltered, H2SO4					
Alkalinity	SM 2320 B	Model 556	-			White	Filtered, Raw					
0.1.1		Digital Titrator	N/A			White	Amber/HCL					
Salinity	SM2520 B	Model 556				Fecal Coliform	Sodium Thiosulfate					
Chlorine	SM 4500-CL G	HACH DPD	N/A									
26.	Remarks											
ICG				S.UTL				WDOE				
LAB A	NALYSIS			Annulation				WDOE ACCREDITATION NO. 1025				
FREQUE	NALYSIS) , C , M. P):		Analysis to be performed Ro	isults	A	Date Time nalyzed Analyzed	WDOE ACCREDITATION NO. 1025 Analyzed Duplicate By Valves				
FREQUE	ENCY (D, W, (Э.С. М.Р):	/	Analysis to be performed Ro	is (mg/l)	A/	Date Time Inalyzed Analyzed	WDOE ACCREDITATION NO. 1025 Analyzed Duplicate By Valves 5.94 3333				
FREQUE DATE RE	ENCY (D. W. (ECEIVED:	⊃C. M. P): /	/	Analysis to be performed Ro	rbidity (NTU)	A 	Date Time Inalyzed Analyzed 5_{1} 13.2 10_{1} 13.1	WDOE ACCREDITATION NO. 1025 Analyzed Duplicate By Valves 5.94 33335.09 3346				
	ENCY (D. W. (ECEIVED: ECEIVED: ECEIVED:		/	Analysis to be performed Ro TS TU	rbidity (NTU)	A	Date Time $a_{a_{a_{a_{a_{a_{a_{a_{a_{a_{a_{a_{a_{a$	WDOE ACCREDITATION NO. 1025 Analyzed Duplicate By Valves 5.95 3 333 5.09 3 3% 5.16 3 35/				
FREQUI DATE RI TIME RE RECEIV	ENCY (D. W. (ECEIVED: ECEIVED: /ED BY: EVIEWED:	D, C, M. P):/	/	Analysis to be performed Ro TS TU	rbidity (NTU)		Date Time malyzed Analyzed 5, 13.2 10, 13.1 15, 3.1 13, 1 13, 1	WDOE ACCREDITATION NO. 1025 Analyzed Duplicate By Valves 5.95, 195 , 33335.16 , $335/$				
FREQUE DATE RE TIME RE RECEIV DATE RE	ENCY (D. W. C ECEIVED: ECEIVED: ECEIVED: VED BY: EVIEWED:	D.C. M.P):	/	Analysis to be performed Ro TS TU	rbidity (NTU)	A 	Date Time Analyzed Analyzed 5 13.2 10 13.1 15 13.1	WDOE ACCREDITATION NO. 1025 Analyzed Duplicate By Valves 5.94 3.333 55.09 3.396 5.16 3.357				
FREQUE DATE RU TIME RE RECEIV DATE RU TIME RE REVEIW	ENCY (D. W. C ECEIVED: ECEIVED: ECEIVED: WED BY: EVIEWED: EVIEWED:	D.C.M.P):	/	Analysis to be performed Ro Tru	rbidity (NTU)		Date Time Analyzed Analyzed 5 13.2 10 13.1 15 13.2 10 13.1 15 13.1	WDOE ACCREDITATION NO. 1025 Analyzed Duplicate By Valves 5.95 29 3396 5.16 3357				

FIELD WATER QUALITY SAMPLING AND ANALYSIS

		DETEN										
1.	Project: _	L-PL	.F_,	,		9. Temperatur	· (°C); 10	3				
2.	TCM Site	No:	cach	ute_		10. pH (units)	-22	6	.			
3.	Site Type	(GW.DW.S	SM SWAS	w		11. Cond. Field (mhos/cm):						
4.	Data Typ	e: fle	ł			@25°C:						
5.	Date:	2,13	,10			12. DO (mg/l):						
6.	Time (mil	10:	40			13.						
7.	Collected	By (Initials	: METC	-		14. CRE	0.	50 10	.40			
8.	Confiden	ce: _ 40	ord			15. Chlorine (m	ng/l): free	tota	al			
16.	General	Comments:										
-		-			-							
17.	Weather	Conditions:	Sun	peak-	Ut. bree	22 18. Flow C	conditions:	mod	\$ 6m0	th		
SITE	CONDITIO	NS / SAMP	LE HANDL	ING								
19.	Sampling	Method: _	9R	el.		20. Sampl	e Source:	ditch				
21.	Quantity	Removed B	Before Samp	oling:	Ø	(gal.)	N					
22.	Static Wa	ater Level or	r Discharge	Rate: 3	5. 25 (23. Stage	0.3	3 (ft.)	-			
24.	Field Inst	ruments:		3	1.668 (6	coly 25. Sampl	e Treatment:	CPL	N10			
E CELD	METHOD		Down and the second sec									
TEST	NUMBER	INSTRUMENT	CALIBRATION	actual	ANDARD as measured	TYPE	TREATMEN	т	QUANTITY	CONTAINER TYPE		
TEST Temp.	SM 2550	YSI MPS Model 558	CALIBRATION	ST actual	as measured	TYPE Zwhite	TREATMEN None	п	QUANTITY 280/120	CONTAINER TYPE		
TEST Temp.	METHOD NUMBER SM 2550 SM 4500-H+B	INSTRUMENT YSI MPS Model 558 YSI MPS Model 558	CALIBRATION	ST ectual	ANDARD as measured	TYPE ZWhite (White (White	TREATMEN None Filter, HNO3 Unfilter, HNO3	IT 3 03	QUANTITY 280/120 120	CONTAINER TYPE		
TEST Temp. pH Cond.	METHOD NUMBER SM 2550 SM 4500-H+B SM 2510 B	INSTRUMENT YSI MPS Model 556 YSI MPS Model 556 YSI MPS Model 556 YSI MPS	CALIBRATION	ST actual	ANDARD es messured	TYPE ZWhite 	TREATMEN None Filter, HNO3 Unfilter, HN04 Unfiltered, H	IT 3 03 12SO4	QUANTITY 280/120 120	CONTAINER TYPE		
TEST Temp. pH Cond. Dis Ox.	METHOD NUMBER SM 2550 SM 4500-H+B SM 2510 B SM 2510 B SM 4500-O-G	INSTRUMENT YSI MPS Model 558 YSI MPS Model 556 YSI MPS Model 556 YSI MPS	CALIBRATION	ST actual	es measured	TYPE ZWhite I White I White I White White White	TREATMEN None Filter, HNO3 Unfilter, HNO3 Unfiltered, H Filtered, Ra	IT 3 03 12SO4 W	QUANTITY 28/120 120	CONTAINER TYPE		
TEST Temp. pH Cond. Dis Ox. Alkalinity Salimity	MUMBER SM 2550 SM 4500-H+B SM 2510 B SM 4500-O-G SM 2320 B SM 2320 B	INSTRUMENT YSI MPS Model 556 YSI MPS Model 556 YSI MPS Model 556 YSI MPS Model 556 HACH Digital Timtor YSI MPS	CALIBRATION .	ST actual	CORACIA	TYPE ZWhite I White White White White White Fecal Coliform	TREATMEN None Filter, HNO3 Unfilter, HNO3 Unfiltered, H Filtered, Ray Amber/HCL Sodium Thio	1T 3 03 42SO4 w	QUANTITY 28/120 120			
TEST Temp. pH Cond. Dis Ox. Alkalinity Salinity Chlorine	MUMBER SM 2550 SM 2550 SM 2510 B SM 2510 B SM 2510 B SM 2320 B SM 2320 B SM 2520 B	INSTRUMENT YSI MPS Model 556 YSI MPS Model 556 YSI MPS Model 556 HACH Digital Timitor YSI MPS Model 556 HACH	N/A	ST actual	Longer and	TYPE ZWhite I White White White White White Fecal Coliform	TREATMEN None Filter, HNO3 Unfilter, HNO3 Unfiltered, H Filtered, Ray Amber/HCL Sodium Thio	IT 3 O3 H2SO4 w Dsulfate	QUANTITY 28/120 120			
TEST Temp. pH Cond. Dis Ox. Alkalinity Chiorine 26.	MUMBER SM 2550 SM 2550 SM 2500 B SM 2510 B SM 2510 B SM 2520 B SM 2520 B SM 2520 B SM 2520 B SM 2520 CL G	INSTRUMENT YSI MPS Model 558 YSI MPS Model 556 YSI MPS Model 556 HACH Digital Timtor YSI MPS Model 556 HACH DPD	N/A N/A	ST	as measured	TYPE ZWhite (White White White White Fecal Coliform	TREATMEN None Filter, HNO3 Unfilter, HNO3 Unfiltered, HNO Unfiltered, Ra Amber/HCL Sodium Thio	IT 3 O3 H2SO4 w Dsulfate	QUANTITY 280/120 120			
PH TEST Temp. pH Cond. Dis Ox. Alkalinaly Salimity Chlorine 26. TCG LAB A	MUMBER SM 2550 SM 2550 SM 2550 B SM 2510 B SM 2510 B SM 2320 B SM 2320 B SM 2320 B SM 2320 CL G Remarks	INSTRUMENT YSI MPS Model 556 YSI MPS Model 556 YSI MPS Model 556 HACH Digital Tirrator YSI MPS Model 556 HACH DPD	N/A N/A	ST	es measured	TYPE ZWhite I White White White White Fecal Coliform	TREATMEN None Filter, HNO3 Unfilter, HNO3 Unfiltered, H Filtered, Ray Amber/HCL Sodium Thid	IT 3 O3 H2SO4 w Dsulfate				
TEST Temp. pH Cond. Dis Ox. Alkalinaly Salimity Chlorine 26. TCG LAB A FREQUE	MUMBER SM 2550 SM 2550 SM 2550 B SM 2510 B SM 2510 B SM 2510 B SM 2320 B SM 2320 B SM 2320 B SM 2320 B SM 2520 C SM	INSTRUMENT YSI MPS Model 556 YSI MPS Model 556 YSI MPS Model 556 HACH Digital Tirmico YSI MPS Model 556 HACH Digital 556 HACH Digital 556 HACH Digital 556 YSI MPS Model 556 YSI MPS MODE HACH DI PD DI YSI MPS MODE YSI MPS MODE HACH DI YSI MPS MODE YSI MPS MODE YSI MODE YSI MPS MODE YSI MPS MODE YSI MPS MODE YSI MODE	N/A N/A	Analysis to be performed F	ANDARD es measured	TYPE ZWhite I White White White White Fecal Coliform	TREATMEN None Filter, HNO3 Unfilter, HNO3 Unfiltered, H Filtered, Ray Amber/HCL Sodium Thio	IT 3 O3 42SO4 w Dsulfate	QUANTITY 28/120 120 WDOE ACCREDIT Analyzed By	ATION NO. 1025 Duplicate Valves		
TEST Temp. pH Cond. Dis Ox. Alkalinity Chiorine 26. TCG LAB A FREQUE DATE RI	MUMBER SM 2550 SM 2550 SM 2550 B SM 2510 B SM 2510 B SM 2510 B SM 2520 B SM 2320 B SM 2320 B SM 2520 B SM	INSTRUMENT YSI MPS Model 558 YSI MPS Model 556 YSI MPS Model 556 HACH Digital Timico YSI MPS Model 556 HACH Digital 556 HACH DDD 7 2 4 4 4 4 4 4 4 4 4 4 4 4 4		Analysis to be performed F	ANDARD es measured	TYPE ZWhite I White White White White Fecal Coliform	TREATMEN None Filter, HNO3 Unfilter, HNO3 Unfiltered, H Filtered, Ray Amber/HCL Sodium Thio	IT 3 O3 42SO4 w Dsulfate Time Analyzed	QUANTITY 28/120 120 WDOE ACCREDIT Analyzed By	ATION NO. 1025 Duplicate Valves		
TEST Temp. pH Cond. Dis Ox. Alkalinity Chlorine 26. TCG LAB A FREQUE DATE RI TIME RI	MUMBER SM 2550 SM 2550 SM 2500 B SM 2510 B SM 2510 B SM 2510 B SM 2510 B SM 2520 B SM	INSTRUMENT YSI MPS Model 558 YSI MPS Model 558 YSI MPS Model 556 HACH Digital Timloo YSI MPS MODEL 556 HACH Digital YSI MPS MODEL 556 HACH Digital YSI MPS MODEL 556 HACH Digital YSI MPS MODEL 556 YSI		Analysis to be performed F	ANDARD as measured Anosults SS (mg/l)	TYPE ZWhite (White White White Fecal Coliform	TREATMEN None Filter, HNO3 Unfilter, HNO3 Unfiltered, H Filtered, Ra Amber/HCL Sodium Thid Date malyzed	IT 3 O3 H2SO4 W Dsulfate Time Analyzed	QUANTITY 28/120 120 WDOE ACCREDIT Analyzed By	ATION NO. 1025		
TEST Temp. pH Cond. Dis Ox. Alkalinaly Salimity Chlorine 26. TCG LAB A FREQUE DATE RI TIME RI RECEIN	MUMBER SM 2550 SM 2550 SM 2550 B SM 2510 B SM 2510 B SM 2510 B SM 2520 B SM 2320 B SM 2520 B SM	INSTRUMENT YSI MPS Model 558 YSI MPS Model 556 YSI MPS Model 556 HACH Digital Timor YSI MPS Model 556 HACH DPD 		Analysis to be performed for the formed for the for	ANDARD es measured Another season of the	TYPE ZWhite I White White White Fecal Coliform	TREATMEN None Filter, HNO3 Unfilter, HNO3 Unfiltered, H Filtered, Ra Amber/HCL Sodium Thio	IT 3 O3 H2SO4 W Dsulfate Time Analyzed	QUANTITY 28/120 120 WDOE ACCREDIT Analyzed By	ATION NO. 1025 Duplicate Valves		
TEST Temp. pH Cond. Dis Ox. Alkalinity Selinity Chlorine 26. TCG LAB A FREQUE DATE RI RECEIN DATE RI DATE RI	MUMBER SM 2550 SM 2550 SM 2550 B SM 2510 B SM 2510 B SM 2510 B SM 2510 B SM 2520 B SM	INSTRUMENT YSI MPS Model 558 YSI MPS Model 556 YSI MPS Model 556 YSI MPS Model 556 HACH Digital Timor YSI MPS Model 556 HACH Digital Timor YSI MPS Model 556 HACH DPD 2.44 .01 .01 .01 .01 .01 .01 .01 .01	N/A N/A N/A	Analysis to be performed F	ANDARCI es measured	TYPE ZWhite (White White White White Fecal Coliform	TREATMEN None Filter, HNO3 Unfiltered, HNO3 Unfiltered, Rat Amber/HCL Sodium Thic Date malyzed	IT 3 O3 H2SO4 W Dsulfate Time Analyzed	QUANTITY 28)/120 /20 WDOE ACCEDIT Analyzed By	ATION NO. 1025 Duplicate Valves		
PH Cond. Dis Ox. Alkalinity Salinity Chlorine 26. TCG LAB A FREQUE DATE RI RECEIN DATE RI TIME RE DATE RI	MUMBER SM 2550 SM 2550 SM 2550 SM 2550 B SM 2510 B SM 2510 B SM 2510 B SM 2520 B SM 25	INSTRUMENT YSI MPS Model 558 YSI MPS Model 556 YSI MPS Model 556 HACH Digital Trintor YSI MPS Model 556 HACH DPD 7. 44 .01 .24 .01 .01 .01 .01 .01 .01 .01 .01	N/A N/A N/A N/A	Analysis to be performed F	ANDARD as measured Another as measured Another another	TYPE ZWhite White White White Fecal Coliform	TREATMEN None Filter, HNO3 Unfilter, HNO3 Unfiltered, H Filtered, Rat Amber/HCL Sodium Thic Date nalyzed	IT 3 CO3 H2SO4 W Dsulfate Time Analyzed	QUANTITY 28/120 120 WDOE ACCREDIT Analyzed By	ATION NO. 1025 Duplicate Valves		
TEST Temp. pH Cond. Dis Ox. Alkalinity Salimity Chiorine 26. TCG LAB A FREQUE DATE RI RECEIN TIME RE REVEIW	MUMBER SM 2550 SM 2550 SM 2550 B SM 2510 B SM 2510 B SM 2510 B SM 2510 B SM 2520 B SM	INSTRUMENT YSI MPS Model 558 YSI MPS Model 558 YSI MPS Model 556 HACH Digital Trintor YSI MPS Model 556 HACH DPD 7.99	N/A N/A N/A N/A	Analysis to be performed F	ANDARD as measured Another as measured Another as measured SS (mg/l) Furbidity (NTU)	TYPE ZWhite White White White Fecal Coliform	TREATMEN None Filter, HNO3 Unfilter, HNO3 Unfiltered, H Filtered, Rat Amber/HCL Sodium Thid Date malyzed	IT 3 O3 H2SO4 W Dsulfate Time Analyzed	QUANTITY 28/120 120 WDOE ACCREDIT Analyzed By	ATION NO. 1025 Duplicate Valves		

FIELD	WATER	QUALITY	SAMPLING	AND	ANALYSIS
-------	-------	---------	----------	-----	----------

-	JAIAFIEL	D DETEN	MINATION	3								
1.	Project: _	LPU	-F_			9. Temperatur	re (°C): / 0 . 0					
2.	TCM Site	No:	UP.			10. pH (units):						
3.	Site Type	(GW.DW.S	sy.sw)	su		11. Cond. Field (mhos/cm): 2184						
4.	Data Typ	e: Pla	1			@25°C:						
5.	Date:	2,13	,10			12. DO (mg/l):						
6.	Time (mil): 10:-	30			13.						
7.	Collected	By (Initials	1: MS/4	Ě		14.						
8.	Confiden	ce: GC	nel			15. Chlorine (m	ng/l): free to	otal	1800			
16.	General	Comments:										
-		-										
17.	Weather	Conditions	Shn	6 Tele	- Ctobr	eezers. Flow C	conditions: 102 to	nod t	smooth_			
SITE	CONDITIO	NS / SAMP	PLE HAND									
19.	Sampling	Method:	9	Red		20. Sampl	e Source: dru.	in				
21.	Quantity	Removed B	Before Sam	npling:	Ø	(gal.)	1		1.5			
22.	Static Wa	ater Level o	r Discharg	e Rate:	NA (cf	s) (ft.) 23. Stage:	: MA (ft.)		1. 300.2			
24.	Field Inst	ruments:				25. Sampl	le Treatment: <u>LPC</u>	F10	1000			
FIELD	METHOD NUMBER	INSTRUMENT	CALIBRATION	actual	STANDARD as measured	ТҮРЕ	TREATMENT	QUANTITY	CONTAINER TYPE			
Temp.	SM 2550	YSI MPS Model 556				ZWhite	None	22/120	plst.			
рН	SM 4500-FITB-	Model 5515			and the second second	White	Filter, HNO3	100				
Cond.	SM 2510 B	YSI MPS	1				Unfilter, HNO3	1				
Dec		VSIMDS	-				Unintered, H2504					
US OX.	SM 4500-O-G	TOTMES										
Alkahnity	SM 4500-O-G SM 2320 B	Model 556 HACH	NIA	1		White	Filtered, Raw					
Alkahnity	SM 4500-O-G SM 2320 B	Model 556 HACH Digital Titrator YSI MPS	N/A	1		White	Amber/HCL					
Alkalinity Salinity	SM 4500-O-G SM 2320 B SM2520 B	Model 556 HACH Digital Titrator YSI MPS Model 556	N/A	~		White White Fecal Coliform	Filtered, Raw Amber/HCL Sodium Thiosulfate					
Alkahnity Salinity Chlorine	SM 4500-O-G SM 2320 B SM2520 B SM 4500-CL G	Model 556 HACH Digital Titrator YSI MPS Model 556 HACH DPD	N/A N/A			White White Fecal Coliform	Filtered, Raw Amber/HCL Sodium Thiosulfate					
Alkahnity Salinity Chlorine 26.	SM 4500-O-G SM 2320 B SM2520 B SM 4500-CL G Remarks	Model 556 HACH Digital Titrator YSI MPS Model 556 HACH DPD	N/A N/A		X	White White Fecal Coliform	Filtered, Raw Amber/HCL Sodium Thiosulfate					
Alkalmity Salimity Chlorine 26. TCG LAB A	SM 4500-O-G SM 2320 B SM2520 B SM 4500-CL G Remarks	Model 556 HACH Digital Tanator YSI MPS Model 556 HACH DPD	N/A N/A			White White Fecal Coliform	Filtered, Raw Amber/HCL Sodium Thiosulfate	WDOE	ATION NO. 1025			
Alkahnity Salinity Chlorine 26. TCG LAB A	SM 4500-C-G SM 2320 B SM2520 B SM 4500-CL G Remarks	Model 556 HACH Digital Timelor YSI MPS Model 556 HACH DPD	N/A N/A	Analysis to be performed	Rosults	White White Fecal Coliform	Filtered, Raw Amber/HCL Sodium Thiosulfate	WDOE ACCREDIT, Analyzed By	ATION NO. 1025 Duplicate Valves			
Alkahnäy Salinity Chlorine 26. TCG LAB A FREQUE DATE RI	SM 4500-C-G SM 2320 B SM2520 B SM 4500-CL G Remarks ANALYSIS ENCY (D, W, ECEIVED:	Model 556 HACH Digital Times VSI MPS Model 556 HACH DPD	N/A N/A	Analysis to be performed	Results TSS (mgl)	White Vhite Fecal Coliform	Filtered, Raw Amber/HCL Sodium Thiosulfate Date Time Analyzed Analyzed	WDOE ACCREDIT/ Analyzed By	ATION NO. 1025 Duplicate Valves			
Alkahnay Salinity Chlorine 26. TCG LAB A FREQUE DATE RI TIME RE	SM 4500-O-G SM 2320 B SM2520 B SM2520 B SM 4500-CL G Remarks NALYSIS ENCY (D. W. ECEIVED:	Model 556 HACH Digital Timekx YSI MPS Model 556 HACH DPD	N/A N/A	Analysis to be performed	Results TSS (mgl) Turbidity (NTU)	White Vhite Fecal Coliform	Filtered, Raw Amber/HCL Sodium Thiosulfate Date Time Analyzed Analyzed	WDOE ACCREDIT/ Analyzed By	ATION NO. 1025 Duplicate Valves			
Alkahnay Salimity Chlorine 26. TCG LAB A FREQUE DATE RI TIME RE RECEIV	SM 4500-O-G SM 2320 B SM2520 B SM 4500-CL G Remarks ANALYSIS ENCY (D. W. ECEIVED: ECEIVED: VED BY:	Model 556 HACH Digital Tarekor YSI MPS Model 558 HACH DPD	N/A N/A	Analysis to be performed	Results TSS (mgl) Turbidity (NTU)	White Vhite Fecal Coliform	Filtered, Raw Amber/HCL Sodium Thiosulfate Date Time Analyzed Analyzed	WDOE ACCREDIT/ Analyzed By	ATION NO. 1025 Duplicate Valves			
Alkahnay Salimity Chlorine 26. TCG LAB A FREQUE DATE RI TIME RE RECEIV DATE RI	SM 4500-O-G SM 2320 B SM2520 B SM2520 B SM 4500-CL G Remarks ANALYSIS ENCY (D, W, ECEIVED: ECEIVED: VED BY: EVIEWED:	Model 556 HACH Digital Taretor YSI MPS Model 556 HACH DPD	N/A N/A	Analysis to be performed	Results TSS (mgl) Turbidity (NTU)	White Vhite Fecal Coliform	Filtered, Raw Amber/HCL Sodium Thiosulfate Date Time malyzed Analyzed	WDOE ACCREDIT/ Analyzed By	ATION NO. 1025 Duplicate Valves			
Alkahnay Salimity Chlorine 26. TCG LAB A FREQUE DATE RI TIME RE RECEIV DATE RI TIME RE	SM 4500-O-G SM 2320 B SM2320 B SM2520 B SM 4500-CL G Remarks ANALYSIS ENCY (D, W, ECEIVED: ECEIVED: VED BY: EVIEWED:	Model 556 HACH Digital Taretor YSI MPS Model 556 HACH DPD	N/A N/A	Analysis to be performed	Results TSS (mg/l) Turbidity (NTU)	A	Filtered, Raw Amber/HCL Sodium Thiosulfate	WDOE ACCREDIT/ Analyzed By	ATION NO. 1025 Duplicate Valves			
Alkahnay Salimity Chlorine 26. TCG LAB A FREQUE DATE RI TIME RE RECEIV DATE RI TIME RE REVEIW	SM 4500-O-G SM 2320 B SM2320 B SM2520 B SM 4500-CL G Remarks ANALYSIS ENCY (D, W, ECEIVED: ECEIVED: ECEIVED: EVIEWED: EVIEWED: EVIEWED:	Model 556 HACH Digital Tanator YSI MPS Model 556 HACH DPD	N/A N/A	Analysis to be performed	Rosults TSS (mg/l) Turbidity (NTU)	A	Filtered, Raw Amber/HCL Sodium Thiosulfate	WDOE ACCREDIT/ Analyzed By	ATION NO. 1025 Duplicate Valves			

Maxxam

Your P.O. #: 4700030233 LINE50 Your Project #: LPLF 10 LF1210 Site: TCM Your C.O.C. #: 11886801, 118868-01-01

Attention: Scott Keating TRANSALTA CENTRALIA MINING LLC TRANSALT-CEN 913 BIG HANAFORD ROAD Centralia, WA USA 98531

Report Date: 2010/12/22

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B0C1615 Received: 2010/12/15, 10:55

Sample Matrix: Water # Samples Received: 8

		Date	Date	
Analyses	Quantity	Extracted	Analyzed Laboratory Method	Analytical Method
Alkalinity - Water	8	2010/12/15	2010/12/16 BBY6SOP-00026	Based on SM2320B
Chloride by Automated Colourimetry	8	N/A	2010/12/16 BBY6SOP-00011	Based on EPA 325.2
Fluoride - Mining Clients	8	N/A	2010/12/16 BBY6SOP-00038	Based SM - 4500 F C
Hardness Total (calculated as CaCO3)	2	N/A	2010/12/21	
Hardness Total (calculated as CaCO3)	6	N/A	2010/12/22	
Hardness (calculated as CaCO3)	8	N/A	2010/12/20	
Mercury (Total) by CVAF	2	2010/12/22	2010/12/22 65-A-002-10	EPA 245.7
Ion Balance	8	N/A	2010/12/20 Calc	
Na, K, Ca, Mg, S by CRC ICPMS (diss.)	8	N/A	2010/12/20 BBY7SOP-00002	Based on EPA 200.8
Elements by CRC ICPMS (dissolved)	8	N/A	2010/12/17 BBY7SOP-00002	Based on EPA 200.8
Na, K, Ca, Mg, S by CRC ICPMS (total)	2	2010/12/15	2010/12/21 BBY7SOP-00002	Based on EPA 200.8
Na, K, Ca, Mg, S by CRC ICPMS (total)	6	2010/12/15	2010/12/22 BBY7SOP-00002	Based on EPA 200.8
Elements by CRC ICPMS (total)	8	2010/12/18	2010/12/21 BBY7SOP-00002	Based on EPA 200.8
Ammonia-N	7	N/A	2010/12/16 BBY6SOP-00044	Based on EPA 350.1
Ammonia-N	1	N/A	2010/12/17 BBY6SOP-00044	Based on EPA 350.1
Nitrate + Nitrite (N)	7	N/A	2010/12/16 BBY6SOP-00010	Based on USEPA 353.2
Nitrate + Nitrite (N)	1	N/A	2010/12/17 BBY6SOP-00010	Based on USEPA 353.2
Nitrite (N) by CFA	8	N/A	2010/12/16 BBY6SOP-00010	EPA 353.2
Nitrogen - Nitrate (as N)	7	N/A	2010/12/17 BBY6SOP-00010	Based on EPA 353.2
Nitrogen - Nitrate (as N)	1	N/A	2010/12/20 BBY6SOP-00010	Based on EPA 353.2
Filter and HNO3 Preserve for Metals	8	N/A	2010/12/15 BRN WI-00006 R1.0	Based on EPA 200.2
Sulphite by IC ()	1	N/A	2010/12/16 CAL SOP-00071	SM 4110-B
Sulphite by IC ()	7	N/A	2010/12/17 CAL SOP-00071	SM 4110-B
Sulphate by Automated Colourimetry	4	N/A	2010/12/16 BBY6SOP-00017	Based on EPA 375.4
Sulphate by Automated Colourimetry	3	N/A	2010/12/17 BBY6SOP-00017	Based on EPA 375.4
Sulphate by Automated Colourimetry	1	N/A	2010/12/22 BBY6SOP-00017	Based on EPA 375.4
Total Dissolved Solids (Filt. Residue)	8	N/A	2010/12/16 BBY6SOP-00033	SM 2540C
Carbon (Total Organic)	8	N/A	2010/12/16 BBY6SOP-00003	Based on SM-5310C
Field pH	8	N/A	2010/12/16	
Field Temperature	8	N/A	2010/12/15	
Field Conductivity	8	N/A	2010/12/16	

* Results relate only to the items tested.

(1) This test was performed by Maxxam Calgary Environmental

TRANSALTA CENTRALIA MINING LLC Client Project #: LPLF 10 LF1210 Site Reference: TCM Your P.O. #: 4700030233 LINE50

-2-

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

NAMITA SAHNI, BBY Customer Service Email: NSahni@maxxam.ca Phone# (604) 639-2614

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total cover pages: 2

TRANSALTA CENTRALIA MINING LLC Client Project #: LPLF 10 LF1210 Site Reference: TCM Your P.O. #: 4700030233 LINE50

RESULTS OF CHEMICAL ANALYSES OF WATER

Maxxam ID		Z05009			Z05010		Z05011			Z05012		
Sampling Date		2010/12/13			2010/12/13		2010/12/13			2010/12/13		
		12:20			10:10		09:45			09:15		
	Units	LPLF1	RDL	QC Batch	LPLF2	RDL	LPLF3	RDL	QC Batch	LPLF4	RDL	QC Batch
Misc. Inorganics				-							-	
Fluoride (F)	mg/L	0.12	0.01	4509400	0.05	0.01	0.09	0.01	4509400	0.24	0.01	4509400
Field-Vancouver												
Field Conductivity	uS/cm	4600	0.1	ONSITE	1200	0.1	1100	0.1	ONSITE	400	0.1	ONSITE
Field pH	pH Units	6.5	0.1	ONSITE	6.4	0.1	6.8	0.1	ONSITE	7.1	0.1	ONSITE
Field Temperature	°C	12.9	N/A	ONSITE	11.9	N/A	11.9	N/A	ONSITE	11.6	N/A	ONSITE
ANIONS												
Nitrite (N)	mg/L	0.055	0.005	4512347	<0.005	0.005	<0.005	0.005	4512347	<0.005	0.005	4512347
Calculated Parameters												
Filter and HNO3 Preservation	N/A	FIELD	N/A	ONSITE	FIELD	N/A	FIELD	N/A	ONSITE	FIELD	N/A	ONSITE
Total Hardness (CaCO3)	mg/L	1300	0.5	4505547	722	0.5	202	0.5	4505547	59.5	0.5	4505547
Ion Balance	N/A	0.90	0.01	4507665	0.92	0.01	1.0	0.01	4507665	0.96	0.01	4507665
Nitrate (N)	mg/L	3.46	0.04	4505971	<0.02	0.02	<0.02	0.02	4505971	0.20	0.02	4505971
Misc. Inorganics	-											
Dissolved Hardness (CaCO3)	mg/L	1300	0.5	4505239	714	0.5	201	0.5	4505239	56.3	0.5	4505239
Total Organic Carbon (C)	mg/L	4.5	0.5	4512104	<0.5	0.5	2.0	0.5	4512104	1.6	0.5	4512104
Bicarbonate (HCO3)	mg/L	1300	0.5	4508843	400	0.5	720	0.5	4508843	300	0.5	4508843
Carbonate (CO3)	mg/L	<0.5	0.5	4508843	<0.5	0.5	<0.5	0.5	4508843	<0.5	0.5	4508843
Anions												
Dissolved Sulphate (SO4)	mg/L	2900	50	4516557	660	5	180	0.5	4516557	26	0.5	4512601
Dissolved Sulphite (SO3)	mg/L	<30(1)	30	4513355	<5(1)	5	<3(1)	3	4513355	< 0.5(2)	0.5	4513355
Dissolved Chloride (Cl)	mg/L	7.4	0.5	4512599	4.0	0.5	6.3	0.5	4512599	3.9	0.5	4512599
Nutrients												
Ammonia (N)	mg/L	0.42	0.005	4509619	0.77	0.01	0.80	0.01	4509619	0.10	0.005	4509619
Nitrate plus Nitrite (N)	mg/L	3.51	0.04	4514743	<0.02	0.02	< 0.02	0.02	4512300	0.20	0.02	4512300
Physical Properties												
Total Dissolved Solids	mg/L	4200	10	4510064	1200	10	880	10	4510064	310	10	4510064

N/A = Not Applicable

RDL = Reportable Detection Limit

(1) - Sample was precreened by ion chromatography. Sulfite was not detected.

Sample was past hold time when received.

Detection limits raised due to matrix interference.

(2) - Sample was precreened by ion chromatography. Sulfite was not detected.

Sample was past hold time when received.

TRANSALTA CENTRALIA MINING LLC Client Project #: LPLF 10 LF1210 Site Reference: TCM Your P.O. #: 4700030233 LINE50

RESULTS OF CHEMICAL ANALYSES OF WATER

Maxxam ID		Z05013			Z05014			Z05015		Z05016		
Sampling Date		2010/12/13			2010/12/13			2010/12/13		2010/12/13		
		12:45			12:00			10:40		10:30		
	Units	LPLF5	RDL	QC Batch	LPLF8	RDL	QC Batch	LEACHATE	RDL	UD	RDL	QC Batch
Misc. Inorganics				-						•		
Fluoride (F)	mg/L	0.21	0.01	4509400	0.12	0.05	4509400	0.84	0.01	0.15	0.01	4509400
Field-Vancouver												
Field Conductivity	uS/cm	2800	0.1	ONSITE	3400	0.1	ONSITE	1800	0.1	2200	0.1	ONSITE
Field pH	pH Units	6.4	0.1	ONSITE	5.2	0.1	ONSITE	9.3	0.1	6.1	0.1	ONSITE
Field Temperature	°C	13.8	N/A	ONSITE	13.1	N/A	ONSITE	12.3	N/A	10.0	N/A	ONSITE
ANIONS												
Nitrite (N)	mg/L	<0.005	0.005	4512347	0.033	0.005	4512347	0.120	0.005	<0.005	0.005	4512347
Calculated Parameters												
Filter and HNO3 Preservation	N/A	FIELD	N/A	ONSITE	FIELD	N/A	ONSITE	FIELD	N/A	FIELD	N/A	ONSITE
Total Hardness (CaCO3)	mg/L	2250	0.5	4505547	1950	0.5	4505547	770	0.5	1670	0.5	4505547
Ion Balance	N/A	1.1	0.01	4507665	0.98	0.01	4507665	1.0	0.01	1.1	0.01	4507665
Nitrate (N)	mg/L	0.04	0.02	4505971	<0.02	0.02	4505971	1.29	0.02	<0.02	0.02	4505971
Misc. Inorganics												
Dissolved Hardness (CaCO3)	mg/L	2230	0.5	4505239	1810	0.5	4505239	707	0.5	1570	0.5	4505239
Total Organic Carbon (C)	mg/L	1.1	0.5	4512104	3.3	0.5	4512104	13.6	0.5	3.8	0.5	4512104
Bicarbonate (HCO3)	mg/L	540	0.5	4508843	120	0.5	4508843	45	0.5	230	0.5	4508843
Carbonate (CO3)	mg/L	<0.5	0.5	4508843	<0.5	0.5	4508843	10	0.5	<0.5	0.5	4508843
Anions												
Dissolved Sulphate (SO4)	mg/L	1800	5	4512601	3000	50	4527046	1200	5	1600	5	4512601
Dissolved Sulphite (SO3)	mg/L	<30(1)	30	4513355	<30(1)	30	4513355	<10(1)	10	<30(1)	30	4513355
Dissolved Chloride (Cl)	mg/L	7.4	0.5	4512599	11	0.5	4512599	18	0.5	9.7	0.5	4512599
Nutrients												
Ammonia (N)	mg/L	0.27	0.005	4509619	5.3	0.1	4513468	0.68(2)	0.05	1.1	0.03	4509619
Nitrate plus Nitrite (N)	mg/L	0.04	0.02	4512300	0.05	0.02	4512300	1.41	0.02	<0.02	0.02	4512300
Physical Properties												
Total Dissolved Solids	mg/L	3400	10	4510064	3900	10	4510064	1900	10	2800	10	4510064

N/A = Not Applicable

RDL = Reportable Detection Limit

(1) - Sample was precreened by ion chromatography. Sulfite was not detected.

Sample was past hold time when received.

Detection limits raised due to matrix interference.

(2) - RDL raised due to sample matrix interference.

TRANSALTA CENTRALIA MINING LLC Client Project #: LPLF 10 LF1210 Site Reference: TCM Your P.O. #: 4700030233 LINE50

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Maxxam ID		Z05009		Z05010		Z05011		Z05012			Z05013		
Sampling Date		2010/12/13		2010/12/13		2010/12/13		2010/12/13			2010/12/13		
		12:20		10:10		09:45		09:15			12:45		
	Units	LPLF1	RDL	LPLF2	QC Batch	LPLF3	QC Batch	LPLF4	RDL	QC Batch	LPLF5	RDL	QC Batch
Elements													
Total Mercury (Hg)	ug/L	<0.08	0.08	<0.02	4516786	0.03	4516790	<0.02	0.02	4526222	0.06	0.04	4516790
Dissolved Metals by ICPMS	5												
Dissolved Arsenic (As)	ug/L	<0.4	0.4	0.2	4511238	0.2	4511238	0.3	0.1	4511238	0.3	0.2	4511238
Dissolved Barium (Ba)	ug/L	20	4	43	4511238	117	4511238	76	1	4511238	28	2	4511238
Dissolved Boron (B)	ug/L	822	200	157	4511238	264	4511238	298	50	4511238	194	100	4511238
Dissolved Cadmium (Cd)	ug/L	0.38	0.04	0.04	4511238	0.06	4511238	0.02	0.01	4511238	0.50	0.02	4511238
Dissolved Chromium (Cr)	ug/L	<4	4	<1	4511238	<1	4511238	<1	1	4511238	<2	2	4511238
Dissolved Iron (Fe)	ug/L	4370	20	3170	4511238	197	4511238	37	5	4511238	280	10	4511238
Dissolved Lead (Pb)	ug/L	<0.8	0.8	<0.2	4511238	<0.2	4511238	<0.2	0.2	4511238	<0.4	0.4	4511238
Dissolved Manganese (Mn)	ug/L	451	4	1010	4511238	864	4511238	52	1	4511238	5090	2	4511238
Dissolved Mercury (Hg)	ug/L	<0.08	0.08	<0.02	4511238	<0.02	4511238	<0.02	0.02	4511238	<0.04	0.04	4511238
Dissolved Selenium (Se)	ug/L	<0.4	0.4	<0.1	4511238	<0.1	4511238	<0.1	0.1	4511238	<0.2	0.2	4511238
Dissolved Silver (Ag)	ug/L	<0.08	0.08	<0.02	4511238	<0.02	4511238	<0.02	0.02	4511238	<0.04	0.04	4511238
Dissolved Zinc (Zn)	ug/L	37	20	6	4511238	<5	4511238	<5	5	4511238	98	10	4511238
Dissolved Calcium (Ca)	mg/L	352	0.2	206	4505240	54.8	4505240	13.2	0.05	4505240	623	0.1	4505240
Dissolved Magnesium (Mg)	mg/L	102	0.2	48.3	4505240	15.5	4505240	5.68	0.05	4505240	163	0.1	4505240
Dissolved Potassium (K)	mg/L	17.8	0.2	5.12	4505240	4.79	4505240	1.75	0.05	4505240	8.1	0.1	4505240
Dissolved Sodium (Na)	mg/L	1090	0.2	96.0	4505240	261	4505240	96.9	0.05	4505240	124	0.1	4505240

TRANSALTA CENTRALIA MINING LLC Client Project #: LPLF 10 LF1210 Site Reference: TCM Your P.O. #: 4700030233 LINE50

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Maxxam ID		Z05009		Z05010		Z05011		Z05012			Z05013		
Sampling Date		2010/12/13		2010/12/13		2010/12/13		2010/12/13			2010/12/13		
		12:20		10:10		09:45		09:15			12:45		
	Units	LPLF1	RDL	LPLF2	QC Batch	LPLF3	QC Batch	LPLF4	RDL	QC Batch	LPLF5	RDL	QC Batch
Total Metals by ICPMS													
Total Arsenic (As)	ug/L	2.8	0.4	0.2	4516786	<0.1	4516790	<0.1	0.1	4516790	<0.2	0.2	4516790
Total Barium (Ba)	ug/L	90	4	42	4516786	116	4516790	76	1	4516790	29	2	4516790
Total Boron (B)	ug/L	727	200	149	4516786	266	4516790	306	50	4516790	214	100	4516790
Total Cadmium (Cd)	ug/L	0.48	0.04	0.03	4516786	0.07(1)	4516790	0.05	0.01	4516790	0.61	0.02	4516790
Total Chromium (Cr)	ug/L	42	4	<1	4516786	<1	4516790	<1	1	4516790	<2	2	4516790
Total Iron (Fe)	ug/L	14100	20	3220	4516786	206	4516790	63	5	4516790	556	10	4516790
Total Lead (Pb)	ug/L	5.6	0.8	<0.2	4516786	<0.2	4516790	<0.2	0.2	4516790	<0.4	0.4	4516790
Total Manganese (Mn)	ug/L	498	4	1050	4516786	891	4516790	75	1	4516790	5230	2	4516790
Total Selenium (Se)	ug/L	<0.4	0.4	<0.1	4516786	<0.1	4516790	<0.1	0.1	4516790	<0.2	0.2	4516790
Total Silver (Ag)	ug/L	<0.08	0.08	<0.02	4516786	<0.02	4516790	<0.02	0.02	4516790	<0.04	0.04	4516790
Total Zinc (Zn)	ug/L	52	20	<5	4516786	<5	4516790	<5	5	4516790	97	10	4516790
Total Calcium (Ca)	mg/L	351	0.2	207	4505548	54.7	4505548	13.8	0.05	4505548	627	0.1	4505548
Total Magnesium (Mg)	mg/L	102	0.2	50.1	4505548	15.8	4505548	6.07	0.05	4505548	167	0.1	4505548
Total Magnesium (Mg)	ug/L	102000	200	50100	4516786	15800	4516790	6070	50	4516790	167000	100	4516790
Total Potassium (K)	mg/L	18.3	0.2	5.13	4505548	4.73	4505548	1.79	0.05	4505548	8.2	0.1	4505548
Total Potassium (K)	ug/L	18300	200	5130	4516786	4730	4516790	1790	50	4516790	8190	100	4516790
Total Sodium (Na)	mg/L	1080	0.2	100	4505548	277	4505548	109	0.05	4505548	137	0.1	4505548
Total Sulphur (S)	mg/L	915	10	213	4505548	67	4505548	11	3	4505548	732	6	4505548

RDL = Reportable Detection Limit

(1) - Duplicate RPD above control limit - (10% of analytes failure allowed)

TRANSALTA CENTRALIA MINING LLC Client Project #: LPLF 10 LF1210 Site Reference: TCM Your P.O. #: 4700030233 LINE50

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Maxxam ID		Z05014			Z05015		Z05016		
Sampling Date		2010/12/13			2010/12/13		2010/12/13		
		12:00			10:40		10:30		
	Units	LPLF8	RDL	QC Batch	LEACHATE	QC Batch	UD	RDL	QC Batch
Elements									
Total Mercury (Hg)	ug/L	<0.08	0.08	4516790	<0.02	4526222	0.04	0.02	4516790
Dissolved Metals by ICPMS									
Dissolved Arsenic (As)	ug/L	9.2	0.2	4511238	2.1	4511238	0.6	0.1	4511238
Dissolved Barium (Ba)	ug/L	15	2	4511238	132	4511238	25	1	4511238
Dissolved Boron (B)	ug/L	928	100	4511238	2540	4511238	742	50	4511238
Dissolved Cadmium (Cd)	ug/L	0.22	0.02	4511238	0.15	4511238	0.53	0.01	4511238
Dissolved Chromium (Cr)	ug/L	<2	2	4511238	29	4511238	<1	1	4511238
Dissolved Iron (Fe)	ug/L	487000	10	4511238	141(1)	4511238	12800	5	4511238
Dissolved Lead (Pb)	ug/L	<0.4	0.4	4511238	<0.2	4511238	<0.2	0.2	4511238
Dissolved Manganese (Mn)	ug/L	10100	2	4511238	220(1)	4511238	9640	1	4511238
Dissolved Mercury (Hg)	ug/L	< 0.04	0.04	4511238	<0.02	4511238	<0.02	0.02	4511238
Dissolved Selenium (Se)	ug/L	<0.2	0.2	4511238	17.8	4511238	0.2	0.1	4511238
Dissolved Silver (Ag)	ug/L	<0.04	0.04	4511238	<0.02	4511238	<0.02	0.02	4511238
Dissolved Zinc (Zn)	ug/L	570	10	4511238	<5	4511238	204	5	4511238
Dissolved Calcium (Ca)	mg/L	448	0.1	4505240	249	4505240	383	0.05	4505240
Dissolved Magnesium (Mg)	mg/L	169	0.1	4505240	20.4	4505240	149	0.05	4505240
Dissolved Potassium (K)	mg/L	12.7	0.1	4505240	45.4	4505240	13.7	0.05	4505240
Dissolved Sodium (Na)	mg/L	181	0.1	4505240	246	4505240	170	0.05	4505240

RDL = Reportable Detection Limit

(1) - Dissolved greater than total. Reanalysis yields similar results

TRANSALTA CENTRALIA MINING LLC Client Project #: LPLF 10 LF1210 Site Reference: TCM Your P.O. #: 4700030233 LINE50

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Maxxam ID		Z05014			Z05015		Z05016		
Sampling Date		2010/12/13			2010/12/13		2010/12/13		
		12:00			10:40		10:30		
	Units	LPLF8	RDL	QC Batch	LEACHATE	QC Batch	UD	RDL	QC Batch
Total Metals by ICPMS									
Total Arsenic (As)	ug/L	10.3	0.4	4516790	2.2	4516790	0.5	0.1	4516790
Total Barium (Ba)	ug/L	18	4	4516790	143	4516790	24	1	4516790
Total Boron (B)	ug/L	923	200	4516790	2900	4516790	769	50	4516790
Total Cadmium (Cd)	ug/L	0.28	0.04	4516790	0.09	4516790	0.46	0.01	4516790
Total Chromium (Cr)	ug/L	<4	4	4516790	36	4516790	<1	1	4516790
Total Iron (Fe)	ug/L	545000	20	4516790	40	4516790	14100	5	4516790
Total Lead (Pb)	ug/L	<0.8	0.8	4516790	<0.2	4516790	<0.2	0.2	4516790
Total Manganese (Mn)	ug/L	11000	4	4516790	20	4516790	10700	1	4516790
Total Selenium (Se)	ug/L	<0.4	0.4	4516790	18.4	4516790	0.1	0.1	4516790
Total Silver (Ag)	ug/L	<0.08	0.08	4516790	<0.02	4516790	<0.02	0.02	4516790
Total Zinc (Zn)	ug/L	625	20	4516790	<5	4516790	203	5	4516790
Total Calcium (Ca)	mg/L	483	0.2	4505548	274	4505548	401	0.05	4505548
Total Magnesium (Mg)	mg/L	180	0.2	4505548	20.6	4505548	162	0.05	4505548
Total Magnesium (Mg)	ug/L	180000	200	4516790	20600	4516790	162000	50	4516790
Total Potassium (K)	mg/L	13.5	0.2	4505548	51.3	4505548	15.0	0.05	4505548
Total Potassium (K)	ug/L	13500	200	4516790	51300	4516790	15000	50	4516790
Total Sodium (Na)	mg/L	205	0.2	4505548	294	4505548	198	0.05	4505548
Total Sulphur (S)	mg/L	1100	10	4505548	473	4505548	669	3	4505548

TRANSALTA CENTRALIA MINING LLC Client Project #: LPLF 10 LF1210 Site Reference: TCM Your P.O. #: 4700030233 LINE50

Each tem	Package 1 3.3°C perature is the average of up to three cooler temperatures taken at receipt
	RESULTS OF CHEMICAL ANALYSES OF WATER Comments
Sample	Z05014-01 Fluoride - Mining Clients: Detection limits raised due to insufficient sample volume.
	ELEMENTS BY ATOMIC SPECTROSCOPY (WATER) Comments
Sample	Z05009-04 Elements by CRC ICPMS (dissolved): RDL raised due to sample matrix interference.
Sample	Z05013-04 Elements by CRC ICPMS (dissolved): RDL raised due to sample matrix interference.
Sample	Z05014-04 Elements by CRC ICPMS (dissolved): RDL raised due to sample matrix interference.
Sample	Z05009-03 Elements by CRC ICPMS (total): RDL raised due to sample matrix interference.
Sample	Z05013-03 Elements by CRC ICPMS (total): RDL raised due to sample matrix interference.
Sample	Z05014-03 Elements by CRC ICPMS (total): RDL raised due to sample matrix interference.

TRANSALTA CENTRALIA MINING LLC Client Project #: LPLF 10 LF1210 Site Reference: TCM Your P.O. #: 4700030233 LINE50

QUALITY ASSURANCE REPORT

			Matrix Spike		Spiked Blank		Method Blank		RF	٥
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits
4508843	Bicarbonate (HCO3)	2010/12/16					<0.5	mg/L	1.0	20
4508843	Carbonate (CO3)	2010/12/16					<0.5	mg/L	2.3	20
4509400	Fluoride (F)	2010/12/16	101	80 - 120	97	80 - 120	<0.01	mg/L	0.5	20
4509619	Ammonia (N)	2010/12/16	NC	80 - 120	96	80 - 120	<0.005	mg/L	2.4	20
4510064	Total Dissolved Solids	2010/12/16	108	80 - 120	98	80 - 120	<10	mg/L	NC	20
4511238	Dissolved Arsenic (As)	2010/12/17	105	80 - 120	100	80 - 120	<0.1	ug/L	NC	20
4511238	Dissolved Cadmium (Cd)	2010/12/17	108	80 - 120	100	80 - 120	<0.01	ug/L	NC	20
4511238	Dissolved Chromium (Cr)	2010/12/17	100	80 - 120	98	80 - 120	<1	ug/L	NC	20
4511238	Dissolved Lead (Pb)	2010/12/17	103	80 - 120	102	80 - 120	<0.2	ug/L	NC	20
4511238	Dissolved Selenium (Se)	2010/12/17	108	80 - 120	102	80 - 120	<0.1	ug/L	NC	20
4511238	Dissolved Zinc (Zn)	2010/12/17	105	80 - 120	97	80 - 120	<5	ug/L	NC	20
4511238	Dissolved Barium (Ba)	2010/12/17					<1	ug/L	1.0	20
4511238	Dissolved Boron (B)	2010/12/17					<50	ug/L		
4511238	Dissolved Iron (Fe)	2010/12/17					<5	ug/L	0.4	20
4511238	Dissolved Manganese (Mn)	2010/12/17					<1	ug/L	1.5	20
4511238	Dissolved Mercury (Hg)	2010/12/17					<0.02	ug/L	NC	20
4511238	Dissolved Silver (Ag)	2010/12/17					<0.02	ug/L	NC	20
4512104	Total Organic Carbon (C)	2010/12/16	NC	80 - 120	103	80 - 120	<0.5	mg/L	14.7	20
4512300	Nitrate plus Nitrite (N)	2010/12/16	99	80 - 120	104	80 - 120	<0.02	mg/L	0.9(1)	25
4512347	Nitrite (N)	2010/12/16	106	80 - 120	101	80 - 120	<0.005	mg/L	NC	20
4512599	Dissolved Chloride (Cl)	2010/12/16	NC	80 - 120	109	80 - 120	<0.5	mg/L	NC	20
4512601	Dissolved Sulphate (SO4)	2010/12/16	NC	80 - 120	100	80 - 120	0.8, RDL=0.5	mg/L	NC	20
4513468	Ammonia (N)	2010/12/17	NC	80 - 120	87	80 - 120	<0.005	mg/L	0.9	20
4514743	Nitrate plus Nitrite (N)	2010/12/17	94	80 - 120	100	80 - 120	<0.02	mg/L	NC	25
4516557	Dissolved Sulphate (SO4)	2010/12/17	NC	80 - 120	93	80 - 120	<0.5	mg/L	3.7	20
4516786	Total Arsenic (As)	2010/12/21	102	80 - 120	100	80 - 120	<0.1	ug/L	NC	20
4516786	Total Cadmium (Cd)	2010/12/21	105	80 - 120	100	80 - 120	<0.01	ug/L	NC	20
4516786	Total Chromium (Cr)	2010/12/21	103	80 - 120	99	80 - 120	<1	ug/L	NC	20
4516786	Total Lead (Pb)	2010/12/21	107	80 - 120	104	80 - 120	<0.2	ug/L	NC	20
4516786	Total Selenium (Se)	2010/12/21	103	80 - 120	102	80 - 120	<0.1	ug/L	NC	20
4516786	Total Zinc (Zn)	2010/12/21	112	80 - 120	105	80 - 120	<5	ug/L	NC	20
4516786	Total Barium (Ba)	2010/12/21					<1	ug/L	3.0	20
4516786	Total Boron (B)	2010/12/21					<50	ug/L	NC	20
4516786	Total Iron (Fe)	2010/12/21					<5	ug/L	3.6	20
4516786	Total Manganese (Mn)	2010/12/21				ļ	<1	ug/L	2.0	20
4516786	Total Mercury (Hg)	2010/12/21		ļ			<0.02	ug/L	NC	20
4516786	Total Silver (Ag)	2010/12/21				L	<0.02	ug/L	NC	20
4516786	Total Magnesium (Mg)	2010/12/21				ļ	<50	ug/L		
4516786	Total Potassium (K)	2010/12/21					<50	ug/L		

TRANSALTA CENTRALIA MINING LLC Client Project #: LPLF 10 LF1210 Site Reference: TCM Your P.O. #: 4700030233 LINE50

QUALITY ASSURANCE REPORT

			Matrix	Spike	Spiked	Blank	Method Blar	nk	RF	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits
4516790	Total Arsenic (As)	2010/12/21	100	80 - 120	95	80 - 120	<0.1	ug/L	NC	20
4516790	Total Cadmium (Cd)	2010/12/21	98	80 - 120	100	80 - 120	<0.01	ug/L	NC	20
4516790	Total Chromium (Cr)	2010/12/21	105	80 - 120	105	80 - 120	<1	ug/L	NC	20
4516790	Total Lead (Pb)	2010/12/21	102	80 - 120	101	80 - 120	<0.2	ug/L	NC	20
4516790	Total Selenium (Se)	2010/12/21	100	80 - 120	102	80 - 120	<0.1	ug/L	NC	20
4516790	Total Zinc (Zn)	2010/12/21	99	80 - 120	111	80 - 120	<5	ug/L	NC	20
4516790	Total Barium (Ba)	2010/12/21					<1	ug/L	0.04	20
4516790	Total Boron (B)	2010/12/21					<50	ug/L	0.3	20
4516790	Total Iron (Fe)	2010/12/21					<5	ug/L	0.03	20
4516790	Total Manganese (Mn)	2010/12/21					<1	ug/L	3.8	20
4516790	Total Mercury (Hg)	2010/12/21					0.02, RDL=0.02	ug/L	NC	20
4516790	Total Silver (Ag)	2010/12/21					<0.02	ug/L	NC	20
4516790	Total Magnesium (Mg)	2010/12/21					<50	ug/L	3.9	20
4516790	Total Potassium (K)	2010/12/21					<50	ug/L	3.4	20
4526222	Total Mercury (Hg)	2010/12/22	98	80 - 120	102	80 - 120	<0.02	ug/L	NC	20
4527046	Dissolved Sulphate (SO4)	2010/12/22	107	80 - 120	96	80 - 120	<0.5	mg/L	NC	20

N/A = Not Applicable

RDL = Reportable Detection Limit

RPD = Relative Percent Difference

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix to which a known amount of the analyte has been added. Used to evaluate analyte recovery.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was not sufficiently significant to permit a reliable recovery calculation.

NC (RPD): The RPD was not calculated. The level of analyte detected in the parent sample and its duplicate was not sufficiently significant to permit a reliable calculation.

(1) - Sample analysed past recommended hold time

Max	4606 Canada Way, Burnady, Br	tish Columpia Canada V5G 1K5, Tei (604) / 34 / 2/6, Toil-free	1(604) 734 7276 (Fax:(604) 731 238	6 www.maxxam.ca	CHAIN OF CUSTODY RECU	JKD	. 1. 1
	INVOICE INFORMATION:	REPORT INFORMATION	(if differs from invoice):		PROJECT INFORMATION:	Laboratory Use	Page of
Company Name	#1791 TRANSALTA CENTRALIA MININO	LLC Company Name	a	Quotation #:	800295	MAXXAM JOB #:	BOTTLE ORDER #
Contact Name:	Scott Keating	Contact Name		P.O. #:	4700030233 LINE50	ani linit	
Address:	913 BIG HANAFORD ROAD	Address:	2 (()) ()) () () () () () () () () ()	Project #:	LPLF 10	DUCIDIS	118868
D	Centralia WA 98531		1 • • • • • • • • • • • • • • • • • • •	Project Name:	LE1210	CHAIN OF CUSTODY #:	PROJECT MANAGER:
Phone:	(360)330-8153 Fex. (360)330-	8168 Phone	Fax	Site #:	Icm		NAMITA SAHNI
	Scott_Keating@transaita.com	Email		Sampled By:	Maked Slanting	C#118868-01-01	i dan mana
REGULATORY	RITERIA.	SPECIAL INSTRUCTIONS		ANALYSIS REQUESTED (Plea	ase be specifici	TURNAROUND TIME (TAT)	REQUIRED:
-		* * *		•		PLEASE PROVIDE ADVANCE NOTICE F	OR RUSH PROJECTS
			z			Regular (Standard) TAT:	
	5					will be applied if Rush TAT is not specified): Standard TAT = 5-7 Modring days for most tooto	X
		8 2		12 1		Please note: Standard TAT for certain tests such as	BOD and Dioxins/Furans are >
						lays - contact your Project Manager for details.	
100	Note For regulated drinking water samples - please use the D	Drinking Water Chain of Custody Form	PAC			ate Required	ission)
SAM	IPLES MUST BE KEPT COOL (< 10°C) FROM TIME OF SA	MPLING UNTIL DELIVERY TO MAXXAM				with Confirmation Number	
Samo'e Bar	code abel Sample (Location) (doptification	Data Permitted 1 Taxa D	PL			(call)	ab for #)
	banple (Exation) regrandation	Date Sampled Time Sampled Matrix				Bottles Commer	ts
1	LPLPI	12.1310 12:20 GW				5	
2	LPLFZ	10:10					
3	LDIFZ	Gut					
-	- OFCPO						4
4	LPLF4	9:15					
5	LPLFS	12:45					
3	10159						1.1 <u>.</u>
	El Leaberte	10:40 SW					•
1	110	10:21)11	i VV				
1		- Fill V-	J₩ <u></u>		++	<u>V</u>	
* * * * *				<u></u>			
A 44	QUIS (COBY: (Signature/Print) Date: (YY/MM/DD) Time RECEIVE	D BY: (Signature/Print)	Date: (YY/MM/DD)	Time: # Jars Used and	Laboratory Use Onli	
Autur	AHMA 16.12	B B:30 Fader C	wind a flast	10.12.13	13: 2 Not Submitted	i me Senstive emberature (#C) on Records	Custeey Sea mad on
			AWAT ATOMAT	611116	10:55	4 4 7	

•

8

Appendix B Descriptive Statistics:

- Descriptive Statistics
- Time-Series Plots

Constituent Name	Well	Ν	Mean	Standard Deviation	Standard Error	Median	Lower Quartile,	Upper Quartile,	Minimum	Maximum	% Non-Detects
Ammonia (mg/L)	LPLF1 (bg)	6	1.359	1.114	0.4549	0.905	0.437	2.735	0.064	2.86	0
Ammonia (mg/L)	LPLF2	23	0.1739	0.202	0.04213	0.05	0.015	0.349	0.0025	0.65	4.348
Ammonia (mg/L)	LPLF3	23	0.2355	0.2155	0.04494	0.168	0.061	0.299	0.0025	0.77	4.348
Ammonia (mg/L)	LPLF4 (bg)	23	0.1977	0.06814	0.01421	0.197	0.148	0.25	0.08	0.315	0
Ammonia (mg/L)	LPLF5 (bg)	7	0.3123	0.06691	0.02529	0.308	0.292	0.359	0.188	0.396	0
Ammonia (mg/L)	LPLF8	12	5.181	0.6083	0.1756	5.07	4.63	5.65	4.47	6.2	0
Bicarbonate (mg/L)	LPLF1 (bg)	6	1178	456.5	186.4	1350	735	1450	270	1500	0
Bicarbonate (mg/L)	LPLF2	23	339.1	50.89	10.61	340	300	390	230	440	0
Bicarbonate (mg/L)	LPLF3	23	653	43	8.967	650	620	690	560	710	0
Bicarbonate (mg/L)	LPLF4 (bg)	23	277.8	31.33	6.532	280	250	300	230	340	0
Bicarbonate (mg/L)	LPLF5 (bg)	7	664.3	46.5	17.57	660	620	720	610	720	0
Bicarbonate (mg/L)	LPLF8	12	119.9	72.06	20.8	115	5 74	180	2	230	0
Cadmium (mg/L)	LPLF1 (bg)	6	0.0003	0.0002181	0.00008903	0.0003	0.0008	0.00052	0.00004	0.00066	0
Cadmium (mg/L)	LPLF2	23	0.0001652	0.00008877	0.00001851	0.00016	0.00011	0.00021	0.00001	0.00045	0
Cadmium (mg/L)	LPLF3	23	0.00006587	0.00003881	0.000008092	0.00006	0.00004	0.00008	0.000005	0.00019	4.348
Cadmium (mg/L)	LPLF4 (bg)	23	0.00005196	0.00003506	0.00000731	0.00004	0.00003	0.00007	0.000005	0.00017	4.348
Cadmium (mg/L)	LPLF5 (bg)	7	0.0003243	0.0001714	0.00006477	0.00026	0.00022	0.00034	0.00021	0.0007	0
Cadmium (mg/L)	LPLF8	12	0.0007258	0.0004558	0.0001316	0.000845	0.000385	0.001095	0.000005	0.00128	16.67
Calcium (mg/L)	LPLF1 (bg)	6	306.5	114.4	46.7	355	5 191.5	373	79	376	0
Calcium (mg/L)	LPLF2	23	257.6	44.92	9.367	252	218	281	191	345	0
Calcium (mg/L)	LPLF3	23	46.74	6.398	1.334	45	42	50	39	63	0
Calcium (mg/L)	LPLF4 (bg)	23	17.52	2.02	0.4211	17	′ 16	18	15	22	. 0
Calcium (mg/L)	LPLF5 (bg)	7	140.9	8.454	3.195	141	137	147	126	151	0
Calcium (mg/L)	LPLF8	12	516.1	40.49	11.69	527.5	483.5	548	447	573	0
Carbonate (mg/L)	LPLF1 (bg)	6	0.25	0	0	0.25	0.25	0.25	0.25	0.25	100
Carbonate (mg/L)	LPLF2	23	0.25	0	0	0.25	0.25	0.25	0.25	0.25	100
Carbonate (mg/L)	LPLF3	23	2.822	5.846	1.219	0.25	0.25	0.25	0.25	21	78.26
Carbonate (mg/L)	LPLF4 (bg)	23	0.5217	1.303	0.2717	0.25	0.25	0.25	0.25	6.5	95.65
Carbonate (mg/L)	LPLF5 (bg)	7	0.25	0	0	0.25	0.25	0.25	0.25	0.25	100
Carbonate (mg/L)	LPLF8	12	0.25	0	0	0.25	0.25	0.25	0.25	0.25	100
Chloride (mg/L)	LPLF1 (bg)	6	13.58	7.437	3.036	9.55	8.8	22.4	8.7	27	0
Chloride (mg/L)	LPLF2	23	3.804	0.5423	0.1131	3.7	3.6	3.9	3.1	6	0
Chloride (mg/L)	LPLF3	23	5.596	1.016	0.2119	5.1	4.9	6.2	4.6	8	0
Chloride (mg/L)	LPLF4 (bg)	23	3.161	0.3602	0.07511	3.2	2.9	3.3	2.3	3.8	0
Chloride (mg/L)	LPLF5 (bg)	7	4.757	0.8203	0.31	4.7	4	5.3	3.9	6.1	0
Chloride (mg/L)	LPLF8	12	10.41	2.069	0.5973	9.6	8.9	11.5	8.2	15	0

Constituent Name	Well	Ν	Mean	Standard Deviation	Standard Error	Median	Lower Quartile,	Upper Quartile,	Minimum	Maximum	% Non-Detects
Dis. Arsenic (mg/L)	LPLF1 (bg)	6	0.00125	0.001099	0.0004485	0.0008	0.00055	0.0024	0.0005	5 0.0034	0
Dis. Arsenic (mg/L)	LPLF2	23	0.0008391	0.002439	0.0005086	0.0003	0.0002	0.0005	0.0001	0.012	2 0
Dis. Arsenic (mg/L)	LPLF3	23	0.0004609	0.0003448	0.00007189	0.0003	0.0002	0.0005	0.0002	0.0014	0
Dis. Arsenic (mg/L)	LPLF4 (bg)	23	0.0003957	0.0001522	0.00003173	0.0004	0.0003	0.0005	0.0001	0.0007	0
Dis. Arsenic (mg/L)	LPLF5 (bg)	7	0.001657	0.0004685	0.0001771	0.0015	0.0014	0.0022	0.001	0.0023	6 0
Dis. Arsenic (mg/L)	LPLF8	12	0.0054	0.00218	0.0006293	0.005	0.00395	0.0065	0.0027	0.0108	6 0
Dis. Barium (mg/L)	LPLF1 (bg)	6	0.0465	0.02627	0.01072	0.0365	0.034	0.069	0.033	3 0.1	0
Dis. Barium (mg/L)	LPLF2	23	0.06217	0.01678	0.003498	0.061	0.049	0.069	0.04	0.109	0
Dis. Barium (mg/L)	LPLF3	23	0.1187	0.02585	0.005389	0.122	0.116	0.136	0.033	0.155	0
Dis. Barium (mg/L)	LPLF4 (bg)	23	0.09822	0.1248	0.02602	0.066	0.06	0.075	0.001	0.5	0
Dis. Barium (mg/L)	LPLF5 (bg)	7	0.05871	0.008118	0.003068	0.059	0.052	0.063	0.048	3 0.072	2 0
Dis. Barium (mg/L)	LPLF8	12	0.02442	0.007585	0.00219	0.021	0.019	0.0285	0.018	0.039	0
Dis. Boron (mg/L)	LPLF1 (bg)	6	0.7978	0.08147	0.03326	0.801	0.7125	0.88	0.665	5 0.89	0
Dis. Boron (mg/L)	LPLF2	23	0.167	0.01496	0.00312	0.165	0.154	0.175	0.143	3 0.201	0
Dis. Boron (mg/L)	LPLF3	23	0.2796	0.1332	0.02777	0.251	0.234	0.269	0.151	0.87	0
Dis. Boron (mg/L)	LPLF4 (bg)	23	0.208	0.04798	0.01	0.209	0.188	0.241	0.05	5 0.28	6 0
Dis. Boron (mg/L)	LPLF5 (bg)	7	0.1861	0.02816	0.01064	0.203	0.155	0.211	0.153	0.213	6 0
Dis. Boron (mg/L)	LPLF8	12	0.7154	0.1173	0.03385	0.6655	0.626	0.785	0.601	0.994	0
Dis. Chromium (mg/L)	LPLF1 (bg)	5	0.0007	0.0002739	0.0001225	0.0005	0.0005	0.001	0.0005	5 0.001	60
Dis. Chromium (mg/L)	LPLF2	23	0.0005	0	0	0.0005	0.0005	0.0005	0.0005	0.0005	5 100
Dis. Chromium (mg/L)	LPLF3	23	0.0005	0	0	0.0005	0.0005	0.0005	0.0005	0.0005	5 100
Dis. Chromium (mg/L)	LPLF4 (bg)	23	0.0005217	0.0001043	0.00002174	0.0005	0.0005	0.0005	0.0005	5 0.001	95.65
Dis. Chromium (mg/L)	LPLF5 (bg)	7	0.0005	0	0	0.0005	0.0005	0.0005	0.0005	0.0005	5 100
Dis. Chromium (mg/L)	LPLF8	12	0.0005	0	0	0.0005	0.0005	0.0005	0.0005	0.0005	5 100
Dis. Hardness (mg/L)	LPLF1 (bg)	6	1064	400	163.3	1230	672	1290	264	1320	0
Dis. Hardness (mg/L)	LPLF2	23	856.5	145.9	30.43	843	718	935	652	2 1160	0
Dis. Hardness (mg/L)	LPLF3	23	162.1	19.96	4.162	155	146	176	137	' 211	0
Dis. Hardness (mg/L)	LPLF4 (bg)	23	66.61	5.975	1.246	66	62	68	58	3 79	0
Dis. Hardness (mg/L)	LPLF5 (bg)	7	472.6	23.5	8.882	473	461	493	430) 500	0
Dis. Hardness (mg/L)	LPLF8	12	2033	143.7	41.49	2070	1915	2140	1770) 2250	0
Dis. Lead (mg/L)	LPLF1 (bg)	6	0.00015	0.00008367	0.00003416	0.0001	0.0001	0.00025	0.0001	0.0003	66.67
Dis. Lead (mg/L)	LPLF2	23	0.0001043	0.00002085	0.000004348	0.0001	0.0001	0.0001	0.0001	0.0002	95.65
Dis. Lead (mg/L)	LPLF3	23	0.0001261	0.0001251	0.00002609	0.0001	0.0001	0.0001	0.0001	0.0007	95.65
Dis. Lead (mg/L)	LPLF4 (bg)	23	0.0002174	0.0004997	0.0001042	0.0001	0.0001	0.0001	0.0001	0.0025	86.96
Dis. Lead (mg/L)	LPLF5 (bg)	7	0.0001571	0.0001512	0.00005714	0.0001	0.0001	0.0001	0.0001	0.0005	85.71
Dis. Lead (mg/L)	LPLF8	12	0.0001833	0.0002887	0.00008333	0.0001	0.0001	0.0001	0.0001	0.0011	91.67

Constituent Name	Well	Ν	Mean	Standard Deviation	Standard Error	Median	Lower Quartile,	Upper Quartile,	Minimum	Maximum	% Non-Detects
Dis. Mercury (mg/L)	LPLF1 (bg)	6	0.00002	0.00001673	0.000006831	0.00001	0.00001	0.00004	0.00001	0.00005	66.67
Dis. Mercury (mg/L)	LPLF2	23	0.00001	0	0	0.00001	0.00001	0.00001	0.00001	0.00001	100
Dis. Mercury (mg/L)	LPLF3	23	0.00001174	0.000008341	0.000001739	0.00001	0.00001	0.00001	0.00001	0.00005	95.65
Dis. Mercury (mg/L)	LPLF4 (bg)	23	0.00001043	0.000002085	4.30E-07	0.00001	0.00001	0.00001	0.00001	0.00002	95.65
Dis. Mercury (mg/L)	LPLF5 (bg)	7	0.00001	0	0	0.00001	0.00001	0.00001	0.00001	0.00001	100
Dis. Mercury (mg/L)	LPLF8	12	0.00001	0	0	0.00001	0.00001	0.00001	0.00001	0.00001	100
Dis. Silver (mg/L)	LPLF1 (bg)	6	0.00003167	0.00002639	0.00001078	0.000025	0.00001	0.00006	0.00001	0.0008	33.33
Dis. Silver (mg/L)	LPLF2	23	0.00001826	0.00001696	0.000003537	0.00001	0.00001	0.00002	0.00001	0.0008	69.57
Dis. Silver (mg/L)	LPLF3	23	0.00001435	0.0000108	0.000002252	0.00001	0.00001	0.00001	0.00001	0.00005	82.61
Dis. Silver (mg/L)	LPLF4 (bg)	23	0.00001043	0.000002085	4.30E-07	0.00001	0.00001	0.00001	0.00001	0.00002	95.65
Dis. Silver (mg/L)	LPLF5 (bg)	7	0.00001	0	0	0.00001	0.00001	0.00001	0.00001	0.00001	100
Dis. Silver (mg/L)	LPLF8	12	0.00004333	0.00004459	0.00001287	0.00001	0.00001	0.00009	0.00001	0.00013	58.33
Dis. Sulfite (mg/L)	LPLF1 (bg)	6	0.25	0	0	0.25	0.25	0.25	0.25	0.25	100
Dis. Sulfite (mg/L)	LPLF2	23	0.4565	0.9904	0.2065	0.25	0.25	0.25	0.25	5 5	95.65
Dis. Sulfite (mg/L)	LPLF3	23	0.8348	1.373	0.2863	0.25	0.25	0.25	0.25	5 5.3	78.26
Dis. Sulfite (mg/L)	LPLF4 (bg)	23	0.2848	0.1238	0.02581	0.25	0.25	0.25	0.25	5 0.8	91.3
Dis. Sulfite (mg/L)	LPLF5 (bg)	7	0.25	0	0	0.25	0.25	0.25	0.25	6 0.25	100
Dis. Sulfite (mg/L)	LPLF8	12	0.25	0	0	0.25	0.25	0.25	0.25	6 0.25	100
Fluoride (mg/L)	LPLF1 (bg)	6	0.2083	0.1214	0.04956	0.155	0.14	0.33	0.13	0.45	0
Fluoride (mg/L)	LPLF2	23	0.06913	0.03999	0.008339	0.05	0.04	0.09	0.03	0.18	0
Fluoride (mg/L)	LPLF3	23	0.1222	0.04776	0.00996	0.1	0.09	0.14	0.07	0.26	0
Fluoride (mg/L)	LPLF4 (bg)	23	0.2609	0.05984	0.01248	0.26	0.25	0.28	0.09	0.41	0
Fluoride (mg/L)	LPLF5 (bg)	7	0.1386	0.03185	0.01204	0.14	0.11	0.18	0.1	0.18	0
Fluoride (mg/L)	LPLF8	12	0.1333	0.06527	0.01884	0.115	0.1	0.155	0.05	o 0.27	0
Iron (mg/L)	LPLF1 (bg)	6	0.1272	0.1653	0.06748	0.0785	0.0135	0.2895	0.006	6 0.447	0
Iron (mg/L)	LPLF2	23	0.1147	0.1412	0.02945	0.044	0.019	0.212	0.002	0.572	0
Iron (mg/L)	LPLF3	23	0.03674	0.06595	0.01375	0.02	. 0.01	0.034	0.007	0.324	0
Iron (mg/L)	LPLF4 (bg)	23	0.21	0.1959	0.04084	0.151	0.073	0.33	0.03	0.723	0
Iron (mg/L)	LPLF5 (bg)	7	0.5186	0.9864	0.3728	0.06	0.06	0.59	0.02	2.71	0
Iron (mg/L)	LPLF8	12	809.7	213.5	61.63	795	612	967	516	5 1200	0
Magnesium (mg/L)	LPLF1 (bg)	6	72.93	28.28	11.54	80.75	47.65	90.4	16.3	93.2	0
Magnesium (mg/L)	LPLF2	23	51.79	9.192	1.917	51.3	42.4	57	40.6	5 72.3	0
Magnesium (mg/L)	LPLF3	23	11.08	1.276	0.2661	11.1	9.9	12.3	9.4	13.3	0
Magnesium (mg/L)	LPLF4 (bg)	23	5.557	0.374	0.07797	5.6	5.4	5.7	5	6.9	0
Magnesium (mg/L)	LPLF5 (bg)	7	29.36	1.484	0.561	28.6	28.1	30.4	27.9	32	0
Magnesium (mg/L)	LPLF8	12	181.3	14.03	4.051	179	172	193.5	159	206	0

Constituent Name	Well	Ν	Mean	Standard Deviation	Standard Error	Median	Lower Quartile,	Upper Quartile,	Minimum	Maximum	% Non-Detects
Manganese (mg/L)	LPLF1 (bg)	6	0.5998	0.3027	0.1236	0.6155	0.2925	0.8915	0.26	0.913	0
Manganese (mg/L)	LPLF2	23	0.3297	0.3217	0.06708	0.235	0.036	0.633	0.013	1.03	0
Manganese (mg/L)	LPLF3	23	0.04787	0.0643	0.01341	0.02	0.012	0.073	0.007	0.28	0
Manganese (mg/L)	LPLF4 (bg)	23	0.1121	0.05947	0.0124	0.089	0.063	0.164	0.045	0.249	0
Manganese (mg/L)	LPLF5 (bg)	7	0.322	0.05759	0.02177	0.313	0.262	0.361	0.252	0.417	0
Manganese (mg/L)	LPLF8	12	14.18	2.248	0.649	14.3	12.6	15.8	10.7	18.1	0
Nitrate (mg/L)	LPLF1 (bg)	6	2.333	2.258	0.9218	2.055	0.395	4.55	0.01	6.5	16.67
Nitrate (mg/L)	LPLF2	23	0.3448	0.435	0.0907	0.25	0.15	0.47	0.01	2.16	4.348
Nitrate (mg/L)	LPLF3	23	0.5557	0.2698	0.05625	0.62	0.39	0.69	0.04	0.99	0
Nitrate (mg/L)	LPLF4 (bg)	23	0.04174	0.03725	0.007768	0.03	0.01	0.07	0.01	0.13	39.13
Nitrate (mg/L)	LPLF5 (bg)	7	0.08143	0.08295	0.03135	0.06	0.02	0.11	0.01	0.25	14.29
Nitrate (mg/L)	LPLF8	12	0.1008	0.0902	0.02604	0.075	0.03	0.15	0.01	0.3	25
Nitrate-Nitrite (mg/L)	LPLF1 (bg)	6	2.35	2.251	0.9191	2.09	0.41	4.55	0.01	6.5	16.67
Nitrate-Nitrite (mg/L)	LPLF2	23	0.3491	0.4333	0.09034	0.25	0.15	0.47	0.04	2.16	0
Nitrate-Nitrite (mg/L)	LPLF3	23	0.563	0.2668	0.05563	0.64	0.4	0.7	0.05	0.99	0
Nitrate-Nitrite (mg/L)	LPLF4 (bg)	23	0.04174	0.03725	0.007768	0.03	0.01	0.07	0.01	0.13	39.13
Nitrate-Nitrite (mg/L)	LPLF5 (bg)	7	0.1057	0.07764	0.02935	0.09	0.05	0.14	0.03	0.26	0
Nitrate-Nitrite (mg/L)	LPLF8	12	0.1217	0.0882	0.02546	0.105	0.055	0.17	0.01	0.3	8.333
Nitrite (mg/L)	LPLF1 (bg)	6	0.03483	0.02921	0.01193	0.022	0.012	0.0705	0.011	0.081	0
Nitrite (mg/L)	LPLF2	23	0.005804	0.005819	0.001213	0.0025	0.0025	0.009	0.0025	0.023	65.22
Nitrite (mg/L)	LPLF3	23	0.008522	0.007889	0.001645	0.005	0.0025	0.012	0.0025	0.032	43.48
Nitrite (mg/L)	LPLF4 (bg)	23	0.0025	0	0	0.0025	0.0025	0.0025	0.0025	0.0025	100
Nitrite (mg/L)	LPLF5 (bg)	7	0.007214	0.01101	0.00416	0.0025	0.0025	0.006	0.0025	0.032	71.43
Nitrite (mg/L)	LPLF8	12	0.02258	0.03213	0.009275	0.00525	0.0025	0.0375	0.0025	0.11	50
pH (SIU)	LPLF1 (bg)	6	6.765	0.1983	0.08094	6.785	6.575	6.935	6.4	6.98	0
pH (SIU)	LPLF2	23	6.543	0.2448	0.05104	6.51	6.41	6.67	6.1	7.14	0
pH (SIU)	LPLF3	23	6.753	0.4507	0.09398	6.85	6.6	7	5.23	7.36	0
pH (SIU)	LPLF4 (bg)	23	6.601	0.5264	0.1098	6.73	6.5	6.8	5.1	7.4	0
pH (SIU)	LPLF5 (bg)	7	6.743	0.2225	0.08411	6.7	6.6	6.9	6.4	7.1	0
pH (SIU)	LPLF8	12	5.698	0.2553	0.07369	5.64	5.5	5.955	5.3	6	0
Potassium (mg/L)	LPLF1 (bg)	6	16.45	2.892	1.181	17.95	13	18.4	11.3	18.6	0
Potassium (mg/L)	LPLF2	23	5.822	0.9793	0.2042	5.5	5	6.6	4.6	8	0
Potassium (mg/L)	LPLF3	23	4.465	0.6278	0.1309	4.3	4.1	4.6	3.7	6.6	0
Potassium (mg/L)	LPLF4 (bg)	23	1.674	0.1137	0.02371	1.6	1.6	1.8	1.5	1.9	0
Potassium (mg/L)	LPLF5 (bg)	7	4.9	0.866	0.3273	4.5	4.2	5.9	4.1	6.3	0
Potassium (mg/L)	LPLF8	12	13.05	0.8196	0.2366	12.75	12.55	13.65	11.9	14.6	0

Constituent Name	Well	Ν	Mean	Standard Deviation	Standard Error	Median	Lower Quartile,	Upper Quartile,	Minimum	Maximum	% Non-Detects
Selenium (mg/L)	LPLF1 (bg)	6	0.0001833	0.0001125	0.00004595	0.0002	0.00005	0.0003	0.00005	0.0003	33.33
Selenium (mg/L)	LPLF2	23	0.00008478	0.00005728	0.00001194	0.00005	0.00005	0.0001	0.00005	0.0002	65.22
Selenium (mg/L)	LPLF3	23	0.00008043	0.00007796	0.00001625	0.00005	0.00005	0.0001	0.00005	0.0004	73.91
Selenium (mg/L)	LPLF4 (bg)	23	0.00005	0	0	0.00005	0.00005	0.00005	0.00005	0.00005	100
Selenium (mg/L)	LPLF5 (bg)	7	0.00007143	0.00002673	0.0000101	0.00005	0.00005	0.0001	0.00005	0.0001	57.14
Selenium (mg/L)	LPLF8	12	0.000125	0.0001288	0.00003718	0.00005	0.00005	0.0002	0.00005	0.0004	66.67
Sodium (mg/L)	LPLF1 (bg)	6	927.7	362.4	147.9	1085	563	1135	207	[′] 1150	0
Sodium (mg/L)	LPLF2	23	101.4	12.56	2.619	101	92	108	80	130	0
Sodium (mg/L)	LPLF3	23	269.5	16.1	3.356	269	263	279	239	306	0
Sodium (mg/L)	LPLF4 (bg)	23	81.39	13.04	2.719	82	. 73	90	61	107	· 0
Sodium (mg/L)	LPLF5 (bg)	7	174.6	44.44	16.8	148	140	219	126	233	0
Sodium (mg/L)	LPLF8	12	152.4	14.32	4.135	152.5	5 141.5	158.5	132	. 184	. 0
Specific Conductance (uS/cm)	LPLF1 (bg)	6	3539	1341	547.6	3898	2318	4400	864	4500	0
Specific Conductance (uS/cm)	LPLF2	23	1319	310.8	64.82	1280	1144	1400	915	2565	0
Specific Conductance (uS/cm)	LPLF3	23	1053	224.8	46.87	1037	927	1100	777	' 1925	0
Specific Conductance (uS/cm)	LPLF4 (bg)	23	374.7	104.1	21.7	360	310	403	250	708	0
Specific Conductance (uS/cm)	LPLF5 (bg)	7	1200	200	75.59	1100	1000	1400	1000	1500	0
Specific Conductance (uS/cm)	LPLF8	12	3911	443.8	128.1	3874	3563	4300	3207	4500	0
Sulfate (mg/L)	LPLF1 (bg)	6	2009	778.8	317.9	2200	1327	2500	453	2600	0
Sulfate (mg/L)	LPLF2	23	694	146.2	30.49	700	591	800	450	1000	0
Sulfate (mg/L)	LPLF3	23	199.4	39.65	8.268	190	170	244	140	260	0
Sulfate (mg/L)	LPLF4 (bg)	23	21.39	11.19	2.333	17	' 13	28	10	45	0
Sulfate (mg/L)	LPLF5 (bg)	7	301.4	84.35	31.88	260	230	360	230	450	0
Sulfate (mg/L)	LPLF8	12	3550	566.5	163.5	3600	3250	3900	2300	4500	0
TDS (mg/L)	LPLF1 (bg)	6	3767	1194	487.6	4100	2650	4550	1400	4700	0
TDS (mg/L)	LPLF2	23	1339	210.5	43.89	1300	1200	1400	1100	1900	0
TDS (mg/L)	LPLF3	23	860.9	80.28	16.74	840	800	900	750	1100	0
TDS (mg/L)	LPLF4 (bg)	23	310.4	61.61	12.85	290	270	350	230	450	0
TDS (mg/L)	LPLF5 (bg)	7	998.6	162.4	61.39	910	870	1200	830	1200	0
TDS (mg/L)	LPLF8	12	4600	822.4	237.4	4300	4000	4900	3900	6400	0
Temperature (Deg C)	LPLF1 (bg)	6	12.73	0.7312	0.2985	12.55	12.1	13.55	12	. 14	. 0
Temperature (Deg C)	LPLF2	23	11.6	1.37	0.2857	12	. 10.6	12.5	8.7	' 14	. 0
Temperature (Deg C)	LPLF3	23	11.69	1.038	0.2164	11.3	3 11	12.4	10.1	14	. 0
Temperature (Deg C)	LPLF4 (bg)	23	12.31	1.692	0.3529	12.3	3 11	14	9.3	15	0
Temperature (Deg C)	LPLF5 (bg)	7	12.29	1.976	0.7469	11	11	14	11	16	0
Temperature (Deg C)	LPLF8	12	12.89	0.903	0.2607	12.95	5 12	13.05	12	. 15	0

Constituent Name	Well	Ν	Mean	Standard Deviation	Standard Error	Median	Lower Quartile,	Upper Quartile,	Minimum	Maximum	% Non-Detects
TOC (mg/L)	LPLF1 (bg)	6	44.53	96.25	39.29	5.3	4.9	123.4	4.9	241	0
TOC (mg/L)	LPLF2	23	13.47	59.85	12.48	1	0.25	1.7	0.25	288	34.78
TOC (mg/L)	LPLF3	23	14.3	59.67	12.44	1.8	1.4	2.6	0.25	288	4.348
TOC (mg/L)	LPLF4 (bg)	23	13.14	54.25	11.31	1.9	1.5	2.2	0.25	262	8.696
TOC (mg/L)	LPLF5 (bg)	7	2.571	1.447	0.5467	2.1	1.8	2.6	1.3	5.7	0
TOC (mg/L)	LPLF8	12	7.167	2.719	0.7849	7.55	5.15	9.65	1.9	10.5	0
Zinc (mg/L)	LPLF1 (bg)	2	0.0135	0.002121	0.0015	0.0135	0.0135	0.0135	0.012	0.015	0
Zinc (mg/L)	LPLF2	23	0.005587	0.002687	0.0005603	0.005	0.0025	0.007	0.0025	0.011	30.43
Zinc (mg/L)	LPLF3	23	0.002652	0.0007298	0.0001522	0.0025	0.0025	0.0025	0.0025	0.006	95.65
Zinc (mg/L)	LPLF4 (bg)	23	0.002935	0.00151	0.0003148	0.0025	0.0025	0.0025	0.0025	0.009	91.3
Zinc (mg/L)	LPLF5 (bg)	7	0.0085	0.003253	0.00123	0.009	0.007	0.01	0.0025	0.013	14.29
Zinc (mg/L)	LPLF8	12	0.6258	0.09664	0.0279	0.6085	0.5535	0.6885	0.494	0.833	0

Time Series

Constituent: Ammonia Analysis Run 01/25/2011 1:14 PM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

Time Series

Constituent: Bicarbonate Analysis Run 01/25/2011 1:14 PM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

Time Series

v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA Hollow symbols indicate censored values.

Constituent: Cadmium Analysis Run 01/25/2011 1:14 PM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_ v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA

Constituent: Calcium Analysis Run 01/25/2011 1:14 PM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

APPENDIX B

Time Series

Constituent: Carbonate Analysis Run 01/25/2011 1:15 PM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

Time Series

Constituent: Cation Balance Analysis Run 01/25/2011 1:15 PM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA

Time Series 60 LPLF1 (bg) LPLF2 48 LPLF3 LPLF4 (bg) 36 LPLF5 (bg) mg/L LPLF8 24 UnderDrain Leachate 12 0 11/5/07 6/18/08 1/31/09 9/15/09 4/30/10 12/13/10

Constituent: Chloride Analysis Run 01/25/2011 1:15 PM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_ v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA Hollow symbols indicate censored values.

Constituent: Dis. Arsenic Analysis Run 01/25/2011 1:15 PM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

Time Series

Constituent: Dis. Barium Analysis Run 01/25/2011 1:16 PM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

Constituent: Dis. Boron Analysis Run 01/25/2011 1:16 PM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA Hollow symbols indicate censored values.

Constituent: Dis. Chromium Analysis Run 01/25/2011 1:16 PM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_ v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA

Time Series

Constituent: Dis. Hardness Analysis Run 01/25/2011 1:16 PM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

Constituent: Dis. Lead Analysis Run 01/25/2011 1:16 PM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_ v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA Hollow symbols indicate censored values.

APPENDIX B

Time Series

Constituent: Dis. Mercury Analysis Run 01/25/2011 1:16 PM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

Time Series

v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA Hollow symbols indicate censored values.

Constituent: Dis. Silver Analysis Run 01/25/2011 1:16 PM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_ v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA Hollow symbols indicate censored values.

Constituent: Dis. Sulfite Analysis Run 01/25/2011 1:16 PM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

Constituent: Fluoride Analysis Run 01/25/2011 1:17 PM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_ v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA Hollow symbols indicate censored values. APPENDIX B

Time Series

Constituent: Iron Analysis Run 01/25/2011 1:17 PM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

Time Series

v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA

Constituent: Magnesium Analysis Run 01/25/2011 1:17 PM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_ v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA

Constituent: Manganese Analysis Run 01/25/2011 1:17 PM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

Constituent: Nitrate Analysis Run 01/25/2011 1:17 PM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_ v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA Hollow symbols indicate censored values. APPENDIX B

Time Series

Constituent: Nitrate-Nitrite Analysis Run 01/25/2011 1:17 PM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA Hollow symbols indicate censored values.

Constituent: Nitrite Analysis Run 01/25/2011 1:17 PM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_ v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA

Constituent: pH Analysis Run 01/25/2011 1:17 PM
Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

Constituent: Potassium Analysis Run 01/25/2011 1:18 PM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_ v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA Hollow symbols indicate censored values.

APPENDIX B

Time Series

Constituent: Selenium Analysis Run 01/25/2011 1:18 PM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA

Time Series

Constituent: Sodium Analysis Run 01/25/2011 1:18 PM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_ v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA

Time Series

Constituent: Specific Conductance Analysis Run 01/25/2011 1:18 PM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

Time Series

Constituent: Sulfate Analysis Run 01/25/2011 1:18 PM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

Time Series

Constituent: TDS Analysis Run 01/25/2011 1:18 PM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA Hollow symbols indicate censored values.

Constituent: TOC Analysis Run 01/25/2011 1:18 PM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA

Constituent: Temperature Analysis Run 01/25/2011 1:18 PM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

Time Series

Constituent: Zinc Analysis Run 01/25/2011 1:18 PM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_
Appendix C Test for Trend via Mann-Kendall/Sen's Slope

Legend for Sen's Slope Evaluation:

Slope: The calculated "best fit" line for the well-constituent pair.

Mann-K: The Mann-Kendall statistic.

Critical: The critical value to which the Mann-Kendall statistic is compared. When the Mann-Kendall statistic exceeds the critical value, a trend is identified.

Trend: Indicates if a statistically significant trend has been identified.

N: Number of data points used for the evaluation.

Alpha: An alpha value of 0.05 indicates a 5% probability that a trend will be incorrectly indentified.

Sen's Slope plots are presented for well-constituent pairs where statistically-significant trends were identified. Refer to Table 4-1 for significant cases.

Constituent Name	Well	Slope	Mann-Kendall	Critical Value	Trend	Ν	Alpha
Ammonia (mg/L)	LPLF1 (bg)	-0.3699	-44	-49	No	17	0.05
Ammonia (mg/L)	LPLF2	0.1116	206	158	Yes	38	0.05
Ammonia (mg/L)	LPLF3	0.05941	83	158	No	38	0.05
Ammonia (mg/L)	LPLF4 (bg)	-0.04807	-236	-158	Yes	38	0.05
Ammonia (mg/L)	LPLF5 (bg)	0.05548	18	45	No	16	0.05
Ammonia (mg/L)	LPLF8	-0.1417	-28	-96	No	27	0.05
Ammonia (mg/L)	UnderDrain	0.5863	35	37	No	14	0.05
Ammonia (mg/L)	Leachate	0.08022	1	15	No	7	0.05
Bicarbonate (mg/L)	LPLF1 (bg)	0	-2	-49	No	17	0.05
Bicarbonate (mg/L)	LPLF2	29.8	230	158	Yes	38	0.05
Bicarbonate (mg/L)	LPLF3	47.1	454	158	Yes	38	0.05
Bicarbonate (mg/L)	LPLF4 (bg)	22.08	307	158	Yes	38	0.05
Bicarbonate (mg/L)	LPLF5 (bg)	-96.35	-51	-45	Yes	16	0.05
Bicarbonate (mg/L)	LPLF8	-42.75	-95	-96	No	27	0.05
Bicarbonate (mg/L)	UnderDrain	269.5	27	37	No	14	0.05
Bicarbonate (mg/L)	Leachate	64.18	11	15	No	7	0.05
Cadmium (mg/L)	LPLF1 (bg)	0.0000765	40	49	No	17	0.05
Cadmium (mg/L)	LPLF2	-0.00006919	-378	-158	Yes	38	0.05
Cadmium (mg/L)	LPLF3	-0.000009656	-131	-158	No	38	0.05
Cadmium (mg/L)	LPLF4 (bg)	-0.000009682	-133	-158	No	38	0.05
Cadmium (mg/L)	LPLF5 (bg)	0.0001438	46	45	Yes	16	0.05
Cadmium (mg/L)	LPLF8	-0.0001095	-36	-96	No	27	0.05
Cadmium (mg/L)	UnderDrain	-0.001239	-57	-37	Yes	14	0.05
Cadmium (mg/L)	Leachate	-0.0003476	-7	-15	No	7	0.05
Calcium (mg/L)	LPLF1 (bg)	16.51	26	49	No	17	0.05
Calcium (mg/L)	LPLF2	-19.37	-222	-158	Yes	38	0.05
Calcium (mg/L)	LPLF3	3.185	210	158	Yes	38	0.05
Calcium (mg/L)	LPLF4 (bg)	-1.412	-275	-158	Yes	38	0.05
Calcium (mg/L)	LPLF5 (bg)	271.1	32	45	No	16	0.05
Calcium (mg/L)	LPLF8	-32.9	-123	-96	Yes	27	0.05
Calcium (mg/L)	UnderDrain	-3.578	-3	-37	No	14	0.05
Calcium (mg/L)	Leachate	-139.4	-9	-15	No	7	0.05
Carbonate (mg/L)	LPLF3	0	-107	-158	No	38	0.05
Carbonate (mg/L)	Leachate	-38.58	-9	-15	No	7	0.05
Chloride (mg/L)	LPLF1 (bg)	-1.304	-92	-49	Yes	17	0.05
Chloride (mg/L)	LPLF2	0.0548	91	158	No	38	0.05
Chloride (mg/L)	LPLF3	0	-19	-158	No	38	0.05
Chloride (mg/L)	LPLF4 (bg)	0	-39	-158	No	38	0.05
Chloride (mg/L)	LPLF5 (bg)	2.253	23	45	No	16	0.05
Chloride (mg/L)	LPLF8	-1.712	-121	-96	Yes	27	0.05
Chloride (mg/L)	UnderDrain	-5.118	-22	-37	No	14	0.05
Chloride (mg/L)	Leachate	-63.73	-13	-15	No	7	0.05
Dis. Arsenic (mg/L)	LPLF1 (bg)	-0.0002761	-85	-49	Yes	17	0.05
Dis. Arsenic (mg/L)	LPLF2	-0.00008346	-251	-158	Yes	38	0.05
Dis. Arsenic (mg/L)	LPLF3	-0.0001409	-392	-158	Yes	38	0.05
Dis. Arsenic (mg/L)	LPLF4 (bg)	-0.00003373	-201	-158	Yes	38	0.05
Dis. Arsenic (mg/L)	LPLF5 (bg)	-0.0009233	-89	-45	Yes	16	0.05
Dis. Arsenic (mg/L)	LPLF8	0.001197	54	96	No	27	0.05
Dis. Arsenic (mg/L)	UnderDrain	-0.0001046	-19	-37	No	14	0.05
Dis. Arsenic (mg/L)	Leachate	-0.002028	-10	-15	No	7	0.05
Dis. Barium (mg/L)	LPLF1 (bg)	-0.006871	-79	-49	Yes	17	0.05
Dis. Barium (mg/L)	LPLF2	-0.006677	-200	-158	Yes	38	0.05
Dis. Barium (mg/L)	LPLF3	-0.002296	-91	-158	No	38	0.05
Dis. Barium (mg/L)	LPLF4 (bg)	0.0007652	33	158	No	38	0.05
Dis. Barium (mg/L)	LPLF5 (bg)	-0.02484	-101	-45	Yes	16	0.05
Dis. Barium (mg/L)	LPLF8	-0.004571	-245	-96	Yes	27	0.05
Dis. Barium (mg/L)	UnderDrain	-0.00149	-9	-37	No	14	0.05
Dis. Barium (mg/L)	Leachate	0.02374	1	15	No	7	0.05

Constituent Name	Well	Slope	Mann-Kendall	Critical Value	Trend	Ν	Alpha
Dis. Boron (mg/L)	LPLF1 (bg)	0.026	20	49	No	17	0.05
Dis. Boron (mg/L)	LPLF2	-0.001877	-49	-158	No	38	0.05
Dis. Boron (mg/L)	LPLF3	0	8	158	No	38	0.05
Dis. Boron (mg/L)	LPLF4 (bg)	0.0395	431	158	Yes	38	0.05
Dis. Boron (mg/L)	LPLF5 (bg)	0.002065	4	45	No	16	0.05
Dis. Boron (mg/L)	LPLF8	0.07189	81	96	No	27	0.05
Dis. Boron (mg/L)	UnderDrain	0.006661	1	37	No	14	0.05
Dis. Boron (mg/L)	Leachate	0.2147	1	15	No	7	0.05
Dis. Chromium (mg/L)	LPLF1 (bg)	0	-28	-45	No	16	0.05
Dis. Chromium (mg/L)	Leachate	0.005703	2	15	No	7	0.05
Dis. Hardness (mg/L)	LPLF1 (bg)	67.51	43	49	No	17	0.05
Dis. Hardness (mg/L)	LPLF2	-47.01	-147	-158	No	38	0.05
Dis. Hardness (mg/L)	LPLF3	15.99	262	158	Yes	38	0.05
Dis. Hardness (mg/L)	LPLF4 (bg)	-3.206	-237	-158	Yes	38	0.05
Dis. Hardness (mg/L)	LPLF5 (bg)	986.3	32	45	No	16	0.05
Dis. Hardness (mg/L)	LPLF8	-116.3	-134	-96	Yes	27	0.05
Dis. Hardness (mg/L)	UnderDrain	-83.5	-9	-37	No	14	0.05
Dis. Hardness (mg/L)	Leachate	-185.8	-1	-15	No	7	0.05
Dis. Lead (mg/L)	LPLF1 (ba)	0	-21	-49	No	17	0.05
Dis. Mercury (mg/L)	LPLF1 (bg)	0	-23	-49	No	17	0.05
Dis. Mercury (mg/L)	LPLF2	0	80	158	No	38	0.05
Dis. Mercury (mg/L)	LPLE5 (ba)	0	2	45	No	16	0.05
Dis. Mercury (mg/L)		0	- 60	96	No	27	0.05
Dis. Mercury (mg/L)	UnderDrain	0	-11	-37	No	14	0.05
Dis Mercury (mg/L)	Leachate	-0.00002199	-2	-15	No	7	0.05
Dis Silver (mg/L)	I PI F1 (ba)	0.00002100	-47	-49	No	17	0.05
Dis Silver (mg/L)	I PI F2	0	-26	-158	No	38	0.05
Dis Silver (mg/L)	I PLF3	0	-46	-145	No	36	0.05
Dis Silver (mg/L)		0	-45	-96	No	27	0.05
Dis Silver (mg/L)	UnderDrain	0	-17	-37	No	14	0.05
Dis Silver (mg/L)	Leachate	0	-4	-15	No	7	0.00
Dis Sulfite (mg/L)	I PI F3	0	-137	-158	No	38	0.00
Eluoride (mg/L)	I PI F1 (ba)	-0.03911	-76	-49	Yes	17	0.00
Fluoride (mg/L)		-0.000/32	-256	-158	Voc	28	0.00
Fluoride (mg/L)		-0.009432	-200	-150	Voc	20	0.05
Fluoride (mg/L)		-0.0154	-297	-150	Voc	20	0.05
Fluoride (mg/L)	LFLF4 (bg)	-0.0107	-203	-156	No	16	0.05
Fluorido (mg/L)		0.02371	172	40	Voc	27	0.05
Fluoride (mg/L)	LFLFO	-0.05528	-173	-90	No	11	0.05
Fluoride (mg/L)		-0.1043	-37	-37	No	14	0.05
		-0.0021	-9	-13	Voc	17	0.05
Iron (mg/L)		0.119	70	49	Vee	20	0.05
Iron (mg/L)		0.110	200	100	Yes	30 20	0.05
Iron (mg/L)		-0.000561	-100	-100	Yes	30 20	0.05
Iron (mg/L)	LPLF4 (Dg)	-0.06011	-417	-136	res	30	0.05
Iron (mg/L)		0.0000	19	40	NO	10	0.05
Iron (mg/L)	LPLF8	-170.5	-186	-90	res	21	0.05
Iron (mg/L)	UnderDrain	9.76	35	37	INO No	14	0.05
Iron (mg/L)		-2.848	-11	-15	INO Maa	1	0.05
Magnesium (mg/L)	LPLF1 (bg)	10.58	100	49	res	17	0.05
Magnesium (mg/L)	LPLF2	-0.2897	-15	-158	NO	38	0.05
iviagnesium (mg/L)		1.867	382	158	res	38	0.05
iviagnesium (mg/L)		0.03219	62	158	INO N.L.	38	0.05
iviagnesium (mg/L)		77.31	41	45	NO	16	0.05
Magnesium (mg/L)		-4.977	-75	-96	NO	27	0.05
Magnesium (mg/L)	UnderDrain	36.74	21	37	NO	14	0.05
Magnesium (mg/L)	Leachate	33.88	18	15	Yes	7	0.05
ivianganese (mg/L)		-0.09368	-17	-49	NO	17	0.05
Manganese (mg/L)	LPLF2	0.1938	187	158	Yes	38	0.05

Constituent Name	Well	Slope	Mann-Kendall	Critical Value	Trend	Ν	Alpha
Manganese (mg/L)	LPLF3	0.01237	102	158	No	38	0.05
Manganese (mg/L)	LPLF4 (bg)	-0.03068	-242	-158	Yes	38	0.05
Manganese (mg/L)	LPLF5 (bg)	2.598	20	45	No	16	0.05
Manganese (mg/L)	LPLF8	-1.77	-126	-96	Yes	27	0.05
Manganese (mg/L)	UnderDrain	-1.448	-23	-37	No	14	0.05
Manganese (mg/L)	Leachate	0.3318	8	15	No	7	0.05
Nitrate (mg/L)	LPLF1 (bg)	0.9106	76	49	Yes	17	0.05
Nitrate (mg/L)	LPLF2	-0.09656	-320	-158	Yes	38	0.05
Nitrate (mg/L)	LPLF3	-0.2129	-290	-158	Yes	38	0.05
Nitrate (mg/L)	LPLF4 (bg)	0.04932	333	158	Yes	38	0.05
Nitrate (mg/L)	LPLF5 (bg)	0.01622	13	45	No	16	0.05
Nitrate (mg/L)	LPLF8	-0.02967	-93	-96	No	27	0.05
Nitrate (mg/L)	UnderDrain	-0.1792	-43	-37	Yes	14	0.05
Nitrate (mg/L)	Leachate	2.442	9	15	No	7	0.05
Nitrate-Nitrite (mg/L)	LPLF1 (bg)	0.8838	76	49	Yes	17	0.05
Nitrate-Nitrite (mg/L)	LPLF2	-0.1007	-330	-158	Yes	38	0.05
Nitrate-Nitrite (mg/L)	LPLF3	-0.2333	-299	-158	Yes	38	0.05
Nitrate-Nitrite (mg/L)	LPLF4 (bg)	0.05	340	158	Yes	38	0.05
Nitrate-Nitrite (mg/L)	LPLF5 (bg)	-0.01029	-7	-45	No	16	0.05
Nitrate-Nitrite (mg/L)	LPLF8	-0.04363	-103	-96	Yes	27	0.05
Nitrate-Nitrite (mg/L)	UnderDrain	-0.1792	-43	-37	Yes	14	0.05
Nitrate-Nitrite (mg/L)	Leachate	2.495	7	15	No	7	0.05
Nitrite (mg/L)	LPLF1 (bg)	0.006816	27	49	No	17	0.05
Nitrite (mg/L)	LPLF2	0	-152	-158	No	38	0.05
Nitrite (mg/L)	LPLF3	0	-202	-158	Yes	38	0.05
Nitrite (mg/L)	LPLF5 (bg)	0	-15	-45	No	16	0.05
Nitrite (mg/L)	LPLF8	0	-11	-96	No	27	0.05
Nitrite (mg/L)	UnderDrain	0	-33	-37	No	14	0.05
Nitrite (mg/L)	Leachate	0.08588	5	15	No	7	0.05
pH (SIU)	LPLF1 (bg)	-0.1243	-70	-49	Yes	17	0.05
pH (SIU)	LPLF2	-0.0491	-150	-158	No	38	0.05
pH (SIU)	LPLF3	-0.07249	-159	-158	Yes	38	0.05
pH (SIU)	LPLF4 (bg)	0.1629	207	158	Yes	38	0.05
pH (SIU)	LPLF5 (bg)	-0.1617	-42	-45	No	16	0.05
pH (SIU)	LPLF8	-0.2913	-211	-96	Yes	27	0.05
pH (SIU)	UnderDrain	0.1738	23	37	No	14	0.05
pH (SIU)	Leachate	0.2086	1	15	No	7	0.05
Potassium (mg/L)	LPLF1 (bg)	0.4029	28	49	No	17	0.05
Potassium (mg/L)	LPLF2	-0.6278	-313	-158	Yes	38	0.05
Potassium (mg/L)	LPLF3	0.07588	75	158	No	38	0.05
Potassium (mg/L)	LPLF4 (bg)	0	136	158	No	38	0.05
Potassium (mg/L)	LPLF5 (bg)	1.984	72	45	Yes	16	0.05
Potassium (mg/L)		-0.4484	-70	-96	No	27	0.05
Potassium (mg/L)	UnderDrain	4.368	46	37	Yes	14	0.05
Potassium (mg/L)	Leachate	-25.85	-9	-15	NO	1	0.05
Selenium (mg/L)	LPLF1 (bg)	-0.00003891	-34	-49	NO	17	0.05
Selenium (mg/L)	LPLF2	0	-//	-158	NO	38	0.05
Selenium (mg/L)		0	-128	-158	NO	38	0.05
Selenium (mg/L)	LPLF5 (bg)	0	-38	-45	INO N I -	16	0.05
Selenium (mg/L)	LPLF8	0	-14	-96	INO N I I	21	0.05
Selenium (mg/L)	UnderDrain	-0.0008172	-30	-37	INO N I -	14	0.05
Selenium (mg/L)	Leachate	-0.08329	-9	-15	INO N I -	1	0.05
Sourium (mg/L)	LPLF1 (DG)	52.35	35	49	INO No	17	0.05
Sodium (mg/L)		-4.73	-146	-158	INU No	38	0.05
Sodium (mg/L)		-3.596	-80	-158	NU	30 20	0.05
Sodium (mg/L)		9.635	322	158	res	38 10	0.05
Sodium (mg/L)		-10.39	-44	-45	No	טו דר	0.05
Souium (mg/L)	LFLFÖ	0.747	29	96	INU	21	0.05

Constituent Name	Well	Slope	Mann-Kendall	Critical Value	Trend	Ν	Alpha
Sodium (mg/L)	UnderDrain	39.05	27	37	No	14	0.05
Sodium (mg/L)	Leachate	-692.3	-15	-15	No	7	0.05
Specific Conductance (uS/cm)	LPLF1 (bg)	312.5	74	49	Yes	17	0.05
Specific Conductance (uS/cm)	LPLF2	-21.67	-43	-158	No	38	0.05
Specific Conductance (uS/cm)	LPLF3	29.99	126	158	No	38	0.05
Specific Conductance (uS/cm)	LPLF4 (bg)	41.54	283	158	Yes	38	0.05
Specific Conductance (uS/cm)	LPLF5 (bg)	839.9	34	45	No	16	0.05
Specific Conductance (uS/cm)	LPLF8	-352.3	-112	-96	Yes	27	0.05
Specific Conductance (uS/cm)	UnderDrain	523.2	17	37	No	14	0.05
Specific Conductance (uS/cm)	Leachate	-3844	-11	-15	No	7	0.05
Sulfate (mg/L)	LPLF1 (bg)	327.7	95	49	Yes	17	0.05
Sulfate (mg/L)	LPLF2	-41.91	-127	-158	No	38	0.05
Sulfate (mg/L)	LPLF3	-14.78	-164	-158	Yes	38	0.05
Sulfate (mg/L)	LPLF4 (bg)	2.92	170	158	Yes	38	0.05
Sulfate (mg/L)	LPLF5 (bg)	814.9	25	45	No	16	0.05
Sulfate (mg/L)	LPLF8	-262.6	-102	-96	Yes	27	0.05
Sulfate (mg/L)	UnderDrain	-114.4	-7	-37	No	14	0.05
Sulfate (mg/L)	Leachate	-1319	-7	-15	No	7	0.05
TDS (mg/L)	LPLF1 (bg)	127.5	26	49	No	17	0.05
TDS (mg/L)	LPLF2	0	-93	-158	No	38	0.05
TDS (mg/L)	LPLF3	15.63	95	158	No	38	0.05
TDS (mg/L)	LPLF4 (ba)	16.98	182	158	Yes	38	0.05
TDS (mg/L)	LPLF5 (bg)	1256	30	45	No	16	0.05
TDS (mg/L)	LPLF8	-217.7	-96	-96	No	27	0.05
TDS (mg/L)	UnderDrain	0	-5	-37	No	14	0.05
TDS (mg/L)	Leachate	-2317	-11	-15	No	7	0.05
Temperature (Deg C)	LPLF1 (ba)	-0.05852	-6	-49	No	17	0.05
Temperature (Deg C)	LPLF2	0.4184	179	158	Yes	38	0.05
Temperature (Deg C)	LPLF3	0.4011	199	158	Yes	38	0.05
Temperature (Deg C)	LPLF4 (ba)	0.4424	112	158	No	38	0.05
Temperature (Deg C)	LPLF5 (bg)	-0.3377	-13	-45	No	16	0.05
Temperature (Deg C)	LPLF8	0.1064	28	96	No	27	0.05
Temperature (Deg C)	UnderDrain	5.57	32	37	No	14	0.05
Temperature (Deg C)	Leachate	-23.95	-15	-15	No	7	0.05
TOC (ma/L)	LPLF1 (ba)	-0.6042	-35	-49	No	17	0.05
TOC (mg/L)	LPLF2	-0.231	-177	-158	Yes	38	0.05
TOC (mg/L)	LPLF3	0.06959	48	158	No	38	0.05
TOC (mg/L)	LPLF4 (ba)	-0.07449	-59	-158	No	38	0.05
TOC (mg/L)	LPLF5 (ba)	-0.5681	-45	-45	No	16	0.05
TOC (mg/L)	LPLF8	-2.802	-192	-96	Yes	27	0.05
TOC (mg/L)	UnderDrain	-0.1807	-7	-37	No	14	0.05
TOC (mg/L)	Leachate	-10.07	-11	-15	No	7	0.05
$Z_{inc} (mg/l)$	I PI F1 (ba)	0.008115	40	34	Yes	13	0.05
$Z_{\text{inc}} (mg/L)$	L PL F2	0	-102	-158	No	38	0.05
Z_{inc} (mg/L)	I PI F4 (ba)	0	2	158	No	38	0.05
Zinc (mg/L)	I PI F5 (ba)	0 05275	27	45	No	16	0.05
Z_{inc} (mg/L)	L PL F8	-0.03681	-59	-96	No	27	0.05
Z_{inc} (mg/L)	UnderDrain	-0.3333	-48	-37	Yes	14	0.05
Zinc (mg/L)	Leachate	0	-2	-15	No	7	0.05

i. Trend results represent all possible well-constituent combinations where the number of detects was at least 10 percent or greater.

ii. Result is significant if trend value is "yes"; all cases with "no" are not statistically significant (i.e., not increasing or decreasing). If significant, a positive slope value represents an increasing trend, whereas a negative slope value represents a decreasing trend.

iii. Alpha set to 0.05 (or 95 percent confidence).

Constituent: Ammonia Analysis Run 2/10/2011 11:33 AM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_ v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA Hollow symbols indicate censored values. APPENDIX C

Constituent: Ammonia Analysis Run 2/10/2011 11:33 AM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA

Constituent: Bicarbonate Analysis Run 2/10/2011 11:33 AM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_ v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA

Constituent: Bicarbonate Analysis Run 2/10/2011 11:33 AM

Constituent: Bicarbonate Analysis Run 2/10/2011 11:33 AM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

Constituent: Bicarbonate Analysis Run 2/10/2011 11:33 AM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA Hollow symbols indicate censored values.

Constituent: Cadmium Analysis Run 2/10/2011 11:33 AM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA

Constituent: Cadmium Analysis Run 2/10/2011 11:33 AM

Constituent: Cadmium Analysis Run 2/10/2011 11:33 AM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

Constituent: Calcium Analysis Run 2/10/2011 11:33 AM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA

Constituent: Calcium Analysis Run 2/10/2011 11:33 AM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_ v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA

Constituent: Calcium Analysis Run 2/10/2011 11:33 AM

Constituent: Calcium Analysis Run 2/10/2011 11:33 AM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

Constituent: Cation Balance Analysis Run 2/10/2011 11:34 AM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA

Constituent: Cation Balance Analysis Run 2/10/2011 11:34 AM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_ v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA

Constituent: Chloride Analysis Run 2/10/2011 11:34 AM

Constituent: Chloride Analysis Run 2/10/2011 11:34 AM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

Sen's Slope Estimator LPLF1 (bg) 0.005 n = 17 0.004 Slope = -0.0002761 units per year. Mann-Kendall 0.003 statistic = -85 critical = -49 mg/L Decreasing trend significant at 95% confidence level 0.002 (α = 0.025 per tail). 0.001 ۰. 0 6/18/08 1/31/09 12/13/10 11/5/07 9/15/09 4/30/10

Constituent: Dis. Arsenic Analysis Run 2/10/2011 11:34 AM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA Hollow symbols indicate censored values.

Constituent: Dis. Arsenic Analysis Run 2/10/2011 11:34 AM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

Constituent: Dis. Arsenic Analysis Run 2/10/2011 11:34 AM

Constituent: Dis. Arsenic Analysis Run 2/10/2011 11:34 AM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

Constituent: Dis. Arsenic Analysis Run 2/10/2011 11:34 AM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA

Constituent: Dis. Barium Analysis Run 2/10/2011 11:34 AM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_ v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA

Constituent: Dis. Barium Analysis Run 2/10/2011 11:34 AM

Constituent: Dis. Barium Analysis Run 2/10/2011 11:34 AM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

Constituent: Dis. Barium Analysis Run 2/10/2011 11:34 AM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA

Constituent: Dis. Boron Analysis Run 2/10/2011 11:34 AM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_ v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA

Constituent: Dis. Hardness Analysis Run 2/10/2011 11:34 AM

Constituent: Dis. Hardness Analysis Run 2/10/2011 11:34 AM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

Constituent: Dis. Hardness Analysis Run 2/10/2011 11:34 AM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA

Constituent: Fluoride Analysis Run 2/10/2011 11:34 AM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_ v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA

Constituent: Fluoride Analysis Run 2/10/2011 11:34 AM

Constituent: Fluoride Analysis Run 2/10/2011 11:34 AM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

Constituent: Fluoride Analysis Run 2/10/2011 11:34 AM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA

Constituent: Fluoride Analysis Run 2/10/2011 11:34 AM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_ v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA

Constituent: Iron Analysis Run 2/10/2011 11:34 AM

Constituent: Iron Analysis Run 2/10/2011 11:35 AM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

APPENDIX C

Constituent: Iron Analysis Run 2/10/2011 11:35 AM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA Hollow symbols indicate censored values.

Constituent: Iron Analysis Run 2/10/2011 11:35 AM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_ v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA

Constituent: Iron Analysis Run 2/10/2011 11:35 AM

Constituent: Magnesium Analysis Run 2/10/2011 11:35 AM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

Constituent: Magnesium Analysis Run 2/10/2011 11:35 AM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA

Constituent: Magnesium Analysis Run 2/10/2011 11:35 AM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_ v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA

Constituent: Manganese Analysis Run 2/10/2011 11:35 AM

Constituent: Manganese Analysis Run 2/10/2011 11:35 AM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

Constituent: Manganese Analysis Run 2/10/2011 11:35 AM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA Hollow symbols indicate censored values.

Constituent: Nitrate Analysis Run 2/10/2011 11:35 AM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_ v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA

Constituent: Nitrate Analysis Run 2/10/2011 11:35 AM

v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA Hollow symbols indicate censored values.

Constituent: Nitrate Analysis Run 2/10/2011 11:35 AM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

APPENDIX C

Constituent: Nitrate Analysis Run 2/10/2011 11:35 AM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA Hollow symbols indicate censored values.

Constituent: Nitrate Analysis Run 2/10/2011 11:35 AM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA

Constituent: Nitrate-Nitrite Analysis Run 2/10/2011 11:35 AM

v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA Hollow symbols indicate censored values.

Constituent: Nitrate-Nitrite Analysis Run 2/10/2011 11:35 AM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_ v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA Hollow symbols indicate censored values. APPENDIX C

Constituent: Nitrate-Nitrite Analysis Run 2/10/2011 11:35 AM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA Hollow symbols indicate censored values.

Constituent: Nitrate-Nitrite Analysis Run 2/10/2011 11:35 AM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_ v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA

Constituent: Nitrate-Nitrite Analysis Run 2/10/2011 11:35 AM

v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA Hollow symbols indicate censored values.

Constituent: Nitrate-Nitrite Analysis Run 2/10/2011 11:35 AM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

Sen's Slope Estimator LPLF3 0.2 n = 38 0.16 Slope = 0 units per year. Mann-Kendall 0.12 statistic = -202 critical = -158 mg/L Decreasing trend significant at 95% confidence level 0.08 (α = 0.025 per tail). 0.04 ٠ ٠ ٠ • Ω 6/18/08 1/31/09 9/15/09 12/13/10 11/5/07 4/30/10

Constituent: Nitrite Analysis Run 2/10/2011 11:35 AM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA

Constituent: pH Analysis Run 2/10/2011 11:35 AM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_ v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA

Constituent: pH Analysis Run 2/10/2011 11:35 AM

Constituent: pH Analysis Run 2/10/2011 11:35 AM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

Constituent: pH Analysis Run 2/10/2011 11:35 AM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA

Constituent: Potassium Analysis Run 2/10/2011 11:35 AM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_ v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA

Constituent: Potassium Analysis Run 2/10/2011 11:35 AM

Constituent: Potassium Analysis Run 2/10/2011 11:35 AM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

Constituent: Sodium Analysis Run 2/10/2011 11:35 AM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA

Constituent: Specific Conductance Analysis Run 2/10/2011 11:36 AM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_ v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA

Constituent: Specific Conductance Analysis Run 2/10/2011 11:36 AM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

Constituent: Specific Conductance Analysis Run 2/10/2011 11:36 AM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

Constituent: Sulfate Analysis Run 2/10/2011 11:36 AM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA

Constituent: Sulfate Analysis Run 2/10/2011 11:36 AM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_ v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA

Constituent: Sulfate Analysis Run 2/10/2011 11:36 AM

Constituent: Sulfate Analysis Run 2/10/2011 11:36 AM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

Constituent: TDS Analysis Run 2/10/2011 11:36 AM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_

v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA

Constituent: Temperature Analysis Run 2/10/2011 11:36 AM Facility: TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data File: LPLF Data_Dec 2010_ v.9.1.20 For the statistical analyses of ground water by TransAlta Centralia Mining LLC only. EPA

Constituent: Temperature Analysis Run 2/10/2011 11:36 AM