
2020 Annual Groundwater Monitoring Report for the Limited Purpose Landfill at the TransAlta Centralia Mine, near Centralia, Washington

Prepared for TransAlta Centralia Mining LLC

December 2020

Jacobs 999 W. Riverside Ave Suite 500 Spokane, WA 99201 (509) 747-2000 This report has been certified by a Hydrogeologist licensed in the State of Washington and employed by Jacobs Engineering Group Inc.

12/30/2020

Robert Martin, representing:

Jacobs Engineering Group 999 W. Riverside Ave, Suite 500 Spokane, Washington 99201 Office Phone: 509-747-2000 Email: Robert.Martin@jacobs.com

Contents

Section		Page
Acronyms a	and Abbreviations	v
Introductio	on	1-1
1.1	Purpose and Objectives	1-1
1.2	Document Organization	1-2
1.3	Site Description	1-2
1.4	Status of the Groundwater Monitoring Program	1-3
Monitorin	g Program Description	2-1
2.1	Monitoring Program	2-1
2.2	Monitoring Network	2-1
2.3	Groundwater Level Measurement	2-1
2.4	Groundwater Sampling	2-2
2.5	Field and Laboratory Quality Control	2-2
Groundwa	ter Monitoring Results	3-1
3.1	Compliance Monitoring Events	3-1
3.2	Groundwater Levels and Hydrographs	3-1
3.3	Groundwater Flow Direction	3-1
3.4	Groundwater Flow Velocity Estimates	3-1
3.5	Groundwater Quality Results	3-2
3.6	Data Quality Assessment	3-2
Statistical	Evaluation	4-1
4.1	Statistical Evaluation Regulatory Requirements	4-1
4.2	Statistical Evaluation Methods and Compliance Limits	4-1
4.3	Statistical Evaluation Results	4-2
Alternative	e Source Demonstration	5-3
5.1	CCR Rule Regulatory Applicability	5-3
5.2	Alternative Source Demonstration	5-3
	5.2.1 Site History	5-3
	5.2.2 Background Monitoring Results	5-4
5.3	Summary	5-5
Summary .		6-1
Reference	S	7-1

Appendixes

A	Field	Forms

B Laboratory Report

CONTENTS

Tables

- 1 Groundwater Monitoring Well Network
- 2 Groundwater Elevations and Field Parameters
- 3 Groundwater Analytical Summary
- 4 Data Validation Summary
- 5 Statistical Method and Compliance Limits
- 6 Summary of Compliance Value Exceedance

Figures

- 1 Vicinity Map
- 2 Site Map and Groundwater Monitoring Well Network
- 3 Groundwater Elevation Hydrograph
- 4 Groundwater Elevations and Flow Map June 2, 2020
- 5 Groundwater Elevations and Flow Map October 14, 2020
- 6 LPLF-2R Demonstration Time Series and Trend
- 7 LPLF-8 Demonstration Time Series and Trend

Acronyms and Abbreviations

°C	degrees Celsius
CCR	coal combustion residuals
CCR SAP	Groundwater Monitoring Sampling and Analysis Plan for the Limited Purpose Landfill at the TransAlta Centralia Mine
CFR	Code of Federal Regulations
DQR	Double Quantification Rule
EPA	U.S. Environmental Protection Agency
HNO ₃	nitric acid
LPLF	Limited Purpose Landfill
mg/L	milligram per liter
SSI	statistically significant increase
SWFPR	sitewide false positive rate
ТСМ	TransAlta Centralia Mine
UPL	Upper Prediction Limit
WAC	Washington Administrative Code

Introduction

This section summarizes the 2020 annual report's purpose and objectives, the document organization, and provides the site description and the status of the monitoring program.

1.1 Purpose and Objectives

This document is the 2020 annual report for the Limited Purpose Landfill at the TransAlta Centralia Mine (TCM), as required per *CCR Groundwater Monitoring and Corrective Action* of 40 Code of Federal Regulations (CFR), 257.90(e), *Annual Groundwater Monitoring and Corrective Action Report*. Per the CCR Rule, the minimum requirements for each annual report submittal must include the following (as itemized per 40 CFR 257.90(e) [items 1 through 5]):

- 1. A map showing the Coal Combustion Residuals (CCR) unit (landfill) and the designated CCR groundwater monitoring network, including upgradient and downgradient wells with well identification numbers
- 2. The identification of monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description, and the reasons those actions were taken
- 3. A summary of the groundwater samples that were collected for analysis for each upgradient (or background) and downgradient well, the dates the samples were collected, and whether the sample was required by the detection or assessment monitoring program
- 4. A narrative discussion of transition between monitoring programs (the date and circumstances of transitioning from detection phase to assessment monitoring), if applicable
- 5. Other information required per 40 CFR 257.90 through 257.94, interpreted to include the following:
 - A map showing groundwater elevations, inferred groundwater elevation contours, and inferred groundwater flow direction from the sampling events conducted during the year
 - A groundwater elevation hydrograph, including data over the period of record
 - Groundwater flow rates for the semiannual events conducted during the preceding year
 - Results from data quality review and data validation
 - A summary of the statistical method and the respective background (compliance) limits for Detection Monitoring (Appendix III) constituents
 - A summary of any Appendix III constituents that are identified as a statistically significant increase (SSI) greater than background levels

In addition to this technical information, the annual report must also include narrative of the following items:

- Documentation of the status of the monitoring program (that is, detection or assessment phase)
- Key actions completed for the preceding calendar year including alternative source demonstrations
- A description of problems encountered, and actions taken to resolve the problems (if needed)
- Key activities anticipated for the upcoming year

The annual reports are due by January 31 and summarize monitoring results from the preceding year. The CCR Rule requires specific reports and notifications throughout the monitoring process, with up to three forms of submittals:

- The site's operating record (40 CFR 257.105)
- Notifications to the State Director (40 CFR 257.106)
- The publicly accessible internet site (40 CFR 257.107)

1.2 Document Organization

The document is organized into the following sections:

- Section 1. Introduction. Presents the document purpose and objectives, site description, and status of monitoring program.
- Section 2. Monitoring Program Description. Summarizes the groundwater monitoring system design (well network) and the sampling program for the Limited Purpose Landfill.
- Section 3. Groundwater Monitoring Results. Summarizes the groundwater monitoring information related to background data collection and the initial compliance event, and provides a map showing groundwater elevations and inferred flow direction, estimates of groundwater seepage velocity, and a summary of groundwater quality results for the initial compliance event.
- Section 4. Statistical Evaluation. Summarizes the statistical method and the compliance limits and compares the initial compliance results to the compliance limits to determine whether there is an SSI greater than background conditions for the Appendix III constituents.
- Section 5. Alternative Source Demonstration. Summarizes statistically significant exceedances the detection monitoring results, retesting, confirmation, and documentation of an alternative source demonstration for the confirmed values.
- Section 6. Summary. Summarizes the key points of the initial annual report per the CCR regulatory requirements.
- Section 7. References. Lists the documents referenced to develop this report.

1.3 Site Description

TCM manages the Limited Purpose Landfill, which is approximately 7 miles east of Centralia, Washington (Figure 1). The Limited Purpose Landfill is north of Pit 7 in the Centralia Mine. The site is in the southern half of Section 33, Township 15N, Range 1W; Latitude 46°44′23″ North, Longitude 122°49′55″. The site address is 913 Big Hanaford Road, and the Property Tax Parcel (Account) Number is 023387001000. The permitted area encompassing the Limited Purpose Landfill is 57 acres, and the actual footprint of the waste disposal area is 18 acres (Figure 2). The Limited Purpose Landfill consists of the waste disposal area, and the surface impoundments immediately south of the waste disposal area to manage leachate generated at the disposal cell.

TransAlta Centralia Generation LLC operates a coal-burning power plant that is located adjacent to TCM and generates residual ash waste; the residual ash waste is disposed of into the Limited Purpose Landfill. The construction of Stage 1 began during the summer of 2009, and the Lewis County Environmental Health Department authorized TCM to begin waste disposal operations effective October 31, 2009. On December 21, 2009, the Lewis County Environmental Health Department amended the facility permit to approve the disposal of residual ash waste in Stage 1 Area A3a, in addition to Areas A1 and A2, which had been approved for disposal in the original permit. The Stage 2 Area of the Limited Purpose Landfill

SECTION 1

was constructed in three phases from 2011 through 2014 and was subsequently approved for the receipt of ash waste material.

1.4 Status of the Groundwater Monitoring Program

The groundwater monitoring program is currently in the detection phase, as described under 40 CFR 257.94, *Detection Monitoring Program*.

In 2019, the background levels for the Appendix III constituents listed for detection monitoring was updated. The resultant UPLs represent a longer period of monitoring providing an additional 5 monitoring events. Due to the complex behavior of groundwater and need for sufficiently large sample sizes, the EPA Unified Guidance recommends that background levels should be evaluated and possibly updated every four to eight measurements.

Groundwater monitoring was conducted June 2, 2020 and October 14, 2020 for biannual monitoring. Resampling was conducted after the June 2, 2020 event on July 14, 2020 for an exceedance for boron in wells LPLF-2R and LPLF-8, and for total dissolved solids in LPLF-2R. Resampling was conducted after the October 14, 2020 sampling for boron in well LPLF-8 and for total dissolved solids in well LPLF-2R. The resampling results were used in an alternative source demonstration, as documented in Section 5 of this report. Based on the demonstrations, the SSI are determined as a result of natural variation in groundwater concentrations from m the saturated spoils beneath the facility.

Monitoring Program Description

This section summarizes the CCR groundwater monitoring program for the Limited Purpose Landfill.

2.1 Monitoring Program

Groundwater is monitored in accordance with the CCR SAP (CH2M, 2016). Details regarding the site hydrogeology, the stratigraphic sequence, the uppermost aquifer, and the lower aquitard/confining unit are presented in the groundwater monitoring system design document (CH2M, 2017a) posted to the publicly available website and are not reiterated herein. Details regarding the monitoring network, sampling, and field/laboratory quality control are described in the following sections.

2.2 Monitoring Network

Effective April 17, 2015, the CCR regulations (specifically, 40 CFR 257.91, *Groundwater Monitoring Systems*) require a facility to install a detection groundwater monitoring system at appropriate locations and depths to yield groundwater samples from the uppermost aquifer and monitoring of all potential contamination pathways. At least one upgradient well must accurately represent the quality of background groundwater unaffected by potential leakage from the CCR unit. The regulations also state that at least three downgradient wells must accurately represent the quality of groundwater passing the waste boundary for the detection of potential groundwater contamination in the uppermost aquifer.

Table 1 summarizes the groundwater monitoring well network and construction details for the Limited Purpose Landfill. Figure 2 shows the designated CCR groundwater monitoring network, which consists of five wells screened in the uppermost aquifer and located around the perimeter of the ash disposal area. Monitoring well LPLF-1 and LPLF-5 are effectively upgradient of the landfill and used to characterize background conditions unaffected by the landfill, and wells LPLF-2R, LPLF-7R, and LPLF-8 are downgradient and designated as compliance wells. As noted in Section 1.4, documentation of the CCR *Groundwater Monitoring Systems* design was submitted to the publicly available website in October 2017, as described in the *Coal Combustion Residual Groundwater Monitoring System Certification for the Limited Purpose Landfill at the Centralia Mine near Centralia, Washington* (CH2M, 2017a).

2.3 Groundwater Level Measurement

Static groundwater level measurements are collected during each monitoring event to calculate groundwater elevations, estimate groundwater flow direction, and calculate the groundwater seepage velocity. Groundwater elevations are calculated by subtracting the field measured static depth to water from the surveyed top-of-casing elevations relative to the local vertical datum (NAD 27, Washington State Plane, North 3601, Feet Intl). Field-measured groundwater levels are recorded on field forms (provided in Appendix A) and the groundwater level data are presented in Section 3.

2.4 Groundwater Sampling

Each well is equipped with dedicated tubing to facilitate low-flow sampling methods, except for LPLF-1, which is bailed to collect the sample. A peristaltic pump is used to support sampling methods required for low-flow (minimal drawdown) groundwater sampling procedures as described under *Groundwater Sampling Guidelines for Superfund and RCRA Project Managers* (EPA, 2002). In accordance with the low-flow method, purging continues until field parameters have stabilized to acceptable tolerances as outlined in the CCR SAP (CH2M, 2016b). Field parameters are measured using factory-calibrated multiparameter probe. Appendix A includes copies of field sampling forms for sampling events conducted in 2020.

Groundwater samples were collected in laboratory-provided sample containers. Below are the test methods, reporting limits, and preservatives to collect groundwater samples for the Appendix III constituents for detection monitoring.

Constituent	Analytical Test Method	Reporting Limit (mg/L)	Preservative
Boron	EPA 6010C	0.01	HNO ₃
Calcium	EPA 6010C	0.05	HNO₃
Chloride	EPA 9056A	2.5	Chill to 4°C
Fluoride	EPA 9056A	0.05	Chill to 4°C
рН	SM 4500H B	0.1	Chill to 4°C
Sulfate	EPA 9056A	10	Chill to 4°C
Total Dissolved Solids	SM 2540C	1	Chill to 4°C

°C = degrees Celsius

 $HNO_3 = nitric acid$

mg/L = milligram per liter

Laboratory analyses were performed by an accredited and certified testing laboratory (ALS, from Kelso, Washington).

2.5 Field and Laboratory Quality Control

As described in the CCR SAP (CH2M, 2016b), field and laboratory quality control are guided by the field quality control procedures that included sample labeling, chain-of-custody documentation, and sealing of sample containers following sample collection. Field duplicate and matrix spike (with duplicates) samples are collected during each sampling event. Temperature and method blanks are included with each shipment.

Laboratory quality control procedures included analysis of method blanks, surrogates, duplicates, and matrix spike/matrix spike duplicates. Results from the laboratory quality control are included in the analytical data packages and are included in Appendix B.

Groundwater Monitoring Results

This section summarizes the groundwater monitoring results related to the dates of sampling for the monitoring events, groundwater elevations, groundwater flow direction, the estimates of groundwater seepage velocity, and the groundwater quality results from the monitoring events.

3.1 Compliance Monitoring Events

The CCR Rule requires at least eight background groundwater monitoring events before the October 17, 2017, deadline to establish background conditions. Monitoring events after the eighth background event are considered initial detection-phase compliance monitoring to determine whether there is an SSI greater than background conditions. Below is a summary of the compliance and resampling events and the respective constituent suites for the sampling events. In 2020 an additional 2 monitoring events were included in the re-evaluation and determination of groundwater conditions.

Monitoring Event Type/Purpose	Date Completed	Appendix III, Detection Monitoring Constituents	Resampled Wells		
Detection/Compliance	June 2, 2020	Yes	NA		
Resampling/Confirmation	July 13, 2020	2 Constituents (boron and TDS)	LPLF-2R, LPLF-8		
Detection/Compliance	October 14, 2020	Yes	NA		
Resampling/Confirmation	November 11, 2020	2 Constituents (boron and TDS)	LPLF-2R, LPLF-8		

3.2 Groundwater Levels and Hydrographs

Table 2 summarizes the groundwater measurements from the 2020 groundwater monitoring program. Figure 3 shows the groundwater elevation hydrograph from the CCR network wells from the initial monitoring events conducted from November 2016 through November 2020. In general, groundwater elevations are relatively similar to 2019. Continued monitoring will be used to assess the need to evaluate seasonal patterns, characteristics, or apparent trends in the site hydrograph.

3.3 Groundwater Flow Direction

Figures 4 and 5 show the elevation contours and inferred flow direction for the groundwater conditions at the site for June and October 2020, respectively. The groundwater in the uppermost aquifer beneath the Limited Purpose Landfill generally flows to the southwest. Well LPLF-5 had a measurable water level during the June 2, 2020 sampling event, during the wetter portion of the year, and provided sufficient yield for sampling and analysis, but was dry during the October 14, 2020 sampling event. A flow direction to the southwest is consistent with historical groundwater monitoring results.

3.4 Groundwater Flow Velocity Estimates

The estimated groundwater seepage velocity is 11 feet per year, which is based on the following equation and hydraulic assumptions and groundwater elevations in the uppermost aquifer:

Equation from Fetter, 1994

 $v = \frac{K_a i}{k_a i}$

where:

ν	=	groundwater velocity (seepage velocity)
K _a	=	average horizontal hydraulic conductivity
i	=	horizontal hydraulic gradient
n _e	=	effective porosity

- An average hydraulic conductivity estimate of 0.11 feet per day (equivalent to 3.88 x 10⁻⁵ centimeters per second), which is based on slug test analyses and as summarized in the *Coal Combustion Residual Groundwater Monitoring System Certification for the Limited Purpose Landfill at the Centralia Mine Site near Centralia, Washington* (CH2M, 2017a).
- Hydraulic gradient was consistently 0.04 feet per foot, as measured from Figures 4 and 5. This value is considered a typical value based on previous monitoring performed under the pre-existing WAC program since 2007
- Effective porosity of 0.15 (assumed value generally representative of mine spoils)

3.5 Groundwater Quality Results

Table 3 presents the groundwater quality results for the Appendix III constituents from the 2020 groundwater monitoring and resampling events. Groundwater data from the monitoring events are compared to the background conditions per the selected statistical method to determine whether the initial compliance values exceed background concentrations, as presented in Section 4. Resampling was conducted to confirm parameters that represented statistically significant exceedances for those wells and parameters identified.

3.6 Data Quality Assessment

The groundwater quality data were reviewed to assess the representativeness and usability of data before performing statistical evaluations as presented in Section 4. The method for performing the data quality review is documented in the CCR SAP (CH2M, 2016b) and follows procedures in the U.S. Environmental Protection Agency (EPA) *National Functional Guidelines for Inorganic Superfund Methods Data Review* (EPA, 2016).

Table 4 is a summary of the data validation that was conducted for each sampling and analysis event. The summary includes review of laboratory analysis receipt, qualifiers, laboratory method blanks, replicant sample results and matrix spike recovery. Additionally, a field duplicate was collected for each detection monitoring event and relative percentage difference calculated for the duplicate sample. A minor sample mislabeling was noted and resolved in July 13, 2020 sampling. Two laboratory reporting limit issues were noted, one for fluoride with reporting limits of 2 mg/L instead of 1 mg/L, and a higher than standard reporting limit for chloride in the replicate sample. Both are relatively minor, related to sample dilution and laboratory sample preparation and analysis and since these were for parameters that result in relatively low, or nondetect parameters, not considered significant.

The data quality assessment is that analysis was consistent with the CCR SAP for the site. Based on this review, the field and laboratory methods followed the procedures specified in the CCR SAP, the completeness target/goal of 100 percent was achieved, none of the data were rejected, and data were found to satisfy the data quality objectives to be included for statistical evaluation as presented in Section 4.

This section summarizes the CCR regulatory requirements for statistical evaluation under the detection phase, as well as the selected statistical method, and compares the 2020 monitoring data to determine if monitoring values exceed compliance limits.

4.1 Statistical Evaluation Regulatory Requirements

The CCR Rule specifically lists four methods acceptable for statistical analysis (40 CFR 257.93[f]):

- 1. Parametric or nonparametric analysis of variance
- 2. Tolerance intervals
- 3. Prediction intervals (limits)
- 4. Control charts

Another statistical test method also may be considered if it meets the performance standards listed in 40 CFR 297.93(g). Per the CCR Rule, the selected statistical method was posted to the publicly available website by the October 17, 2017, deadline.

4.2 Statistical Evaluation Methods and Compliance Limits

Based on the site-specific groundwater conditions and results from an exploratory evaluation on the background data, the selected statistical method for evaluating groundwater detection monitoring data is a prediction interval (limit) method, which is a statistical method option, per 40 CFR 257.93(f)(3). The prediction interval method will be used separately for each well-constituent pair and was selected because the Appendix III constituents exhibited significant spatial variability, making an upgradient versus downgradient, also known as interwell, comparison infeasible. The method for six of the seven Appendix III constituents (including boron, calcium, chloride, pH, sulfate, and TDS) is an intra-well Prediction Limit; the seventh constituent, fluoride, is handled separately via the Double Quantification Rule (DQR). Per EPA *Unified Guidance* (2009), the DQR is applicable to constituents that exhibit 100 percent no-detect characteristics, and fluoride is 100 percent nondetect during the background period. The DQR method, which is applicable to fluoride only, assumes that a SSI is confirmed if both the original and retest values are confirmed to be detected values. Supplemental details and rationale for method selection are presented in *Coal Combustion Residual Statistical Method for the Limited Purpose Landfill at the Centralia Mine near Centralia, Washington* (CH2M, 2017b), which has been posted to the CCR public website prior to the October 17, 2017, deadline.

EPA's Unified Guidance (2009) recommends that prediction limits be combined with retesting for maintaining a low sitewide false positive rate (SWFPR) while providing high statistical power. The exploratory analysis confirmed a "1-of-2" retesting strategy is acceptable and will be used to verify an apparent SSI (that is, an initial SSI for Appendix III constituents). Retesting is an integral part of the statistical methodology for controlling the SWFPR when multiple monitoring locations and parameters are being evaluated. Assuming the "1-of-2" retesting approach, an apparent SSI cannot be confirmed or denied until the results of the resampling event have been obtained.

Following the prediction interval method, the compliance limits were calculated on the CCR Appendix III constituents for the three downgradient compliance wells (LPLF-2R, LPLF-8, and LPLF-7R). The calculation of intra-well prediction limits is used for six of the seven CCR constituents, including boron, calcium, chloride, pH, sulfate, and TDS; fluoride is evaluated separately via the DQR as a result of the 100 percent nondetects during background period. Assuming that sample background data are normally

distributed, or assuming that they can be transformed to fit a normal distribution, then the parametric upper prediction limit (UPL) is based on equation (1) as follows:

$$UPL = \overline{x} + Ks \tag{1}$$

where:

 \overline{x} is the sample mean,

s is the sample standard deviation, and

K is a multiplier factor that is chosen based on the evaluation schedule (nE), number of constituents (nc), number of wells (nw), number of background observations (n), overall SWFPR, and the specific retesting scheme selected.

For constituents such as pH, which require both lower and upper prediction limits, equation (2) is used:

$$LPL, UPL = \overline{x} \pm Ks \tag{2}$$

Table 5 presents the background (compliance) limits for each Appendix-III constituent derived from the equations above. For selected constituents exhibiting trends during background period, the background data were detrended before determining the background levels. As shown in Table 5, the constituents in which trends will be accounted for include boron, calcium, and TDS at well LPLF-2R; chloride, sulfate, and TDS at well LPLF-7R; and calcium, sulfate, and TDS at well LPLF-8. For the cases listed as 'no' for trend removal, the UPLs and lower prediction levels are the fixed compliance values to directly compare against future detection monitoring data to determine a SSI above compliance, and will be the levels to use until background is updated in the future. However, for cases listed as 'yes' for trend removal, the UPL is a calculated value dependent on time of sampling using equation (3) as follows:

Note that the trendline equations and variables for intercept, slope, time, and residual values are shown in Table 5; these UPLs are listed as 'calculated' as they are dependent upon the time when the compliance data were obtained. The time (in days) is assumed as the number of days starting from the initial background event (which was collected on November 14, 2017) to when the compliance data in question were collected (example June 2, 2020, which is 1296 days following the initial event on November 14, 2017). For TDS at well LPLF-2R, transformation was performed using the Tukey power transformation to convert it into a normal distribution before applying the simple regression to determine an appropriate relationship for trend removal.

4.3 Statistical Evaluation Results

Table 6 summarizes the monitoring results determined to be confirmed SSI after retesting and therefore identified for further evaluation. The 2020 groundwater monitoring results were less than or within the respective compliance limits, except for the following five cases, boron in LPLF-2R and LPLF-8, and total dissolved solids (TDS) in LPLF-2R.

Resampling and confirmation testing were conducted within 90 days after validation of monitoring results and evaluated for potential detection or applicability of an alternative source demonstration. Resampling resulted in a boron value for LPLF-2R within the compliance limit. Therefore, resulting in a total of four SSI, two for boron in LPLF-8 and two for TDS in LPLF-2R.

The remaining detections were determined that an alternative source demonstration was appropriate for the four results. Section 5 discusses the alternative source demonstration and applicability to these confirmed SSI results. It is anticipated that these results will be included in a review of site conditions and groundwater quality variability under changing groundwater elevations.

Alternative Source Demonstration

This section presents an alternative source demonstration in response to the confirmed SSIs in accordance with 40 CFR Part 257.94(e)(2).

5.1 CCR Rule Regulatory Applicability

In accordance with 40 CFR Part 257.94(e)(2), the site owner has the option to demonstrate that a source other than the regulated unit (ash waste in the LPLF) caused the SSI exceeding background levels before automatically shifting into the assessment phase requirements. The CCR regulations cite examples of alternative sources causing SSIs (for example, error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality).

The CCR regulations require alternative source demonstrations to be completed within 90 days following determination of a valid SSI. The retesting results for the Spring and Fall events were validated for the four SSI and conditions were reviewed within the 90-day period to complete the alternative source demonstration (or the need to shift into assessment monitoring if a successful demonstration is not made). Both demonstrations are included in this section of the 2020 annual report for documentation purposes.

5.2 Alternative Source Demonstration

This section presents the technical basis and documentation to support that natural variation in groundwater quality is the reason for the SSIs observed in monitoring wells LPLF-2R and LPLF-8 as shown in Table 6 at the LPLF site. Additional evaluation was conducted looking at the time series for each of these wells and parameters and a statistical trend evaluation to aid in the demonstration evaluation.

5.2.1 Site History

The hydrogeological setting of the LPLF is unique in that present-day subsurface conditions were constructed such that surface overburden soils (mine spoils) were excavated during active mining operations in 2006 to expose coal seams within the relatively fine-grained Skookumchuck formation. As part of reclamation efforts following coal mining activities, the mine spoils were backfilled into a pit that includes the present-day footprint of the LPLF. Recharge via precipitation created a shallow zone of saturation within the mine spoils immediately overlying the fine-grained Skookumchuck formation, which is the target groundwater monitoring zone as described in the *Coal Combustion Residual Groundwater Monitoring System Certification for the Limited Purpose Landfill at the Centralia Mine Site near Centralia, Washington* (CH2M, 2017b). The mine spoils are generally characterized as light tan to brown silty loam to silty clay with sand lenses; the underlying Skookumchuck is characterized as a sequence of siltstones, claystones, coal seams, and occasional carbonaceous shales. The stratigraphic sequence beneath the center of the LPLF consists of approximately 80 feet of mine spoils, underlain by relatively thick sequence of fine-grained Skookumchuck, estimated at over 500 feet thick in the area.

The mine spoils were generated by removal of coal seam interburdens and placed back into the mined pit. The interburden comprised silt and claystones with stringers of sub-economical coal. The backfill placement resulted in a highly heterogeneous spoil of pulverized silt and claystone with discrete and localized coal and pyritic debris mixed laterally and vertically. These gravel to cobble sized materials can be acid forming and generate localized suppressed pH in the otherwise alkaline silt and clay spoils, and secondary mobilization of calcium, sulfate and other constituents, subsequently increasing TDS in groundwater. The primary mechanisms required for suppressed pH and changes in groundwater

chemistry are presence of acid forming material, water, and oxygen. Fluctuations in groundwater can influence these as fluctuations allow great oxygen access to moist, acid forming materials.

The presence of acid-forming materials in the spoils can result in elevated TDS and associated dissolved constituents in groundwater with localized increases closer to the material. As groundwater fluctuates, this can either submerge previously unsaturated material or expose saturated material to aerobic conditions in the unsaturated zone. The vertical heterogeneity of these materials results in groundwater conditions that can be highly variable for constituents susceptible to mobilization under suppressed pH conditions within localized areas, within a specific monitoring location.

Prior to the CCR regulations that were enacted in April 2015, TCM characterized the hydrogeological conditions for the LPLF as documented in Section 2 of TransAlta Centralia Mining LLC, Limited Purpose Landfill Solid Waste Permit Application, dated October 2008 (CH2M, 2008). To satisfy Chapter 173-350-500 (Limited Purpose Landfill) Washington Administrative Code (WAC) regulations, TCM initiated background monitoring prior to waste placement from 2007 to present, as described in the Washington State Department of Ecology (Ecology) and Lewis County Environmental Health District-approved Groundwater Monitoring Plan for TransAlta Centralia Mining LLC Limited Purpose Landfill, Amendment 1, July 2011 (CH2M, 2011a). Since 2010, TCM has prepared quarterly and annual groundwater monitoring – Data Analysis, Notification, and Reporting. To date, the WAC program remains under detection-phase monitoring status. The existing WAC data collected from 2007 to 2009 pre-date waste placement into the LPLF and were used to document the heterogenous nature of background conditions.

5.2.2 Background Monitoring Results

The background monitoring period may not have fully captured the actual natural variation that might be expected to occur in the spoils and under natural groundwater recharge and fluctuations, especially under conditions where groundwater elevations are lower or higher than have been previously observed. The natural groundwater environment can vary from changes in annual precipitation (recharge) and related geochemical changes associated with residence time within the aquifer materials. Background monitoring events conducted over several years or multiple hydrological cycles would better characterize the natural variability in groundwater and yield more data to strengthen statistical power of detection monitoring analyses. These conditions are the basis for the updated background evaluation conducted in 2019 and used in this evaluation (Jacobs, 2019).

Reviewing the site hydrographs, both wells LPLF-2R and LPLF-8 groundwater elevations have decreased since the initial installation and monitoring. Figures 6 and 7 show the time series plots for TDS and boron for downgradient wells during this same time period. For the selected parameter and well parings, TDS for LPLF-2R and boron for LPLF-8, a Mann-Kendall trend test was applied looking for significant trends given a 95 percent confidence limit, similar to and for comparison with the background UPL that were developed which resulted in calculated UPL where a trend was detected.

The time series for TDS in Figure 6 shows LPLF-2R values are similar to those measured in well LPLF-8, however consistently higher than those measured in LPLF-7R. A significant downward trend is shown for these values of TDS in LPLF-2R and in consistent with the calculated UPL that includes a downward trend and decreased UPL for each monitoring event. Looking at the range of this data in the trend test, this downward trend is decreasing over time, resulting in a flatter downward slope. These support that the exceedance for TDS in LPLF-2R is a result on continued change in saturated spoils geochemistry, and the continued downward trend not associated with release from the landfill.

SECTION 5

The exceedance for boron in well LPLF-8 is based on the UPL of 0.99 mg/L. The exceedances have been 1.1 mg/L and 1.02 mg/L for spring and fall, respectively. Figure 7 shows the time series for boron in the downgradient wells, and that LPLF-8 has always been historically much higher than the other downgradient wells, suggesting that there is an alternative source within the backfilled spoils for the boron in groundwater detected at this location. Boron concentration have increased, and using the full set of data, shows a statistically significant trend at 95 percent confidence level. The time series plot for pH is also shown in Figure 7 and shows that LPLF has also always been historically lower than the other background wells, again indicative of an alternative source for acid forming material within the backfilled spoils near the LPLF-8 location.

Given that LPLF-8 has always exhibited higher concentrations of boron than other downgradient wells, while higher these concentrations are still relatively low, that the changes are within about 0.1 mg/L of change, and that groundwater at this location continues to fluctuate and is at historically low levels, demonstrates that the continued change in boron is due to the nature of the saturated backfill spoils as the alternative source for these results.

As noted in the statistical method certification (CH2M, 2017a) and in accordance with Unified Guidance (EPA, 2009), it is recommended to update background conditions following four to eight sampling events because of the complex behavior of groundwater and the need for sufficiently large sample sizes. Using this principle with semiannual sampling as prescribed under the CCR program, the background values should be reviewed and updated using statistical analysis every 2 to 4 years, assuming no confirmed statistically significant increase is identified. In addition, if hydrogeologic conditions change, then background should be updated to match the latest conditions.

5.3 Alternative Source Demonstration Results

Key findings as provided in this alternative source demonstration are summarized as follows:

- 2020 Monitoring and Retesting was conducted in compliance with the CCR program and resulted in confirmed SSI values based on the current CCR program statistical method.
- These values were evaluated and qualified as unrelated to the LPLF waste materials and related to natural variation in groundwater quality within the saturated backfilled spoils.
- These findings are consistent with similar demonstration for the CCR program in previous groundwater monitoring results at the site.
- The CCR program remains under the detection-phase monitoring status per 40 CFR 257.94, *Detection Monitoring Program.*

Summary

Key findings developed and/or confirmed from the 2020 annual groundwater report are summarized as follows:

- The groundwater elevations measured during the compliance monitoring events were used to develop a site hydrograph, potentiometric surface, inferred groundwater flow direction, and calculated groundwater flow velocity for the spring and fall monitoring events in 2020.
- Groundwater flow directions, gradients, and flow velocities were consistent with historical measurements.
- Groundwater monitoring results for compliance constituents met the compliance limits except for two parameters, boron in monitoring well LPLF- 8 and TDS in monitoring well LPLF-2R.
- The confirmed SSI's were evaluated and demonstrated to be a source other than the regulated unit (ash landfill) and remains in detection phase monitoring.
- Based on groundwater site conditions, the additional groundwater monitoring results will be reviewed and evaluated for the compliance limits using the selected statistical methodology.

References

CH2M HILL Engineers, Inc. (CH2M). 2011b. *TransAlta Centralia Mining Fourth Quarter 2010 Groundwater Monitoring Report.*

CH2M HILL Engineers, Inc. (CH2M). 2016a. Groundwater Monitoring Well Construction Data Report for the Limited Purpose Landfill at the TransAlta Centralia Mining LLC Site.

CH2M HILL Engineers, Inc. (CH2M). 2016b. Groundwater Monitoring Sampling and Analysis Plan for the Limited Purpose Landfill at the TransAlta Centralia Mine LLC.

CH2M HILL Engineers, Inc. (CH2M). 2017a. Coal Combustion Residual Groundwater Monitoring System Certification for the Limited Purpose Landfill at the Centralia Mine Site near Centralia, Washington.

CH2M HILL Engineers, Inc. (CH2M). 2017b. Coal Combustion Residual Statistical Method Certification for the Limited Purpose Landfill at the Centralia Mine near Centralia, Washington.

Fetter, C.W. 1994. Applied Hydrogeology, Third Edition.

Jacobs. 2019. Coal Combustion Residual Statistical Method Certification Addendum – Background Evaluation for the Limited Purpose Landfill at the TransAlta Centralia near Centralia, Washington.

U.S. Environmental Protection Agency (EPA). 2002. *Groundwater Sampling Guidelines for Superfund and RCRA Project Managers*.

U.S. Environmental Protection Agency (EPA). 2009. Unified Guidance: Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities.

U.S. Environmental Protection Agency (EPA). 2016. *National Functional Guidelines for Inorganic Superfund Methods Data Review.*

Tables

Table 1. Groundwater Monitoring Well Network

		Coordinate	s in NAD27 ¹	Top of Casing	Reference Point Top of Ground	Well Scree	n Elevation ²	Sand Pack	Elevation ²	Well		
Well	Installation Date	Northing	Easting	Elevation ²	Elevation ²	Тор	Bottom	Тор	Bottom	Depth ³	Aquifer Unit	Hydraulic Designation
LPLF-1	October 2007	520,881.45	1,420,272.06	347.80	344.58	305.58	285.58	309.58	282.58	59	Mine Spoils	Up or Cross-Gradient
LPLF-5	August 2008	521,931.70	1,419,921.73	359.90	357.88	349.88	344.88	351.38	343.38	13	Mine Spoils	Upgradient
LPLF-8	August 2008	521,235.37	1,419,233.53	298.75	296.93	279.93	274.93	282.93	273.93	22	Mine Spoils	Downgradient
LPLF-2R	July 2016	521,561.20	1,419,130.52	296.04	293.86	10.0	263.9	275.86	262.36	31	Mine Spoils	Downgradient
LPLF-7R	July 2016	521,180.82	1,419,531.95	299.00	297.04	279.7	269.7	282.04	269.04	28	Mine Spoils	Downgradient

2020 Annual Groundwater Monitoring Report for Limited Purpose Landfill - TransAlta Centralia Mine LLC

General Notes:

1. Well LPLF-1 is low yield and sampled via bailer.

Column Header Footnotes:

¹Washington State Plane Coordinates (NAD27).

²All elevations in feet above mean sea level (NGVD29).

³Well depth is feet below ground surface (rounded to nearest foot).

Table 2. Groundwater Elevations and Field Parameters

2020 Annual Groundwater Monitoring Report for Limited Purpose Landfill - TransAlta Centralia Mine LLC

		Reference		Inted Fulpose La	,			Oxidation					
		Point	Depth to	Groundwater			Dissolved	Reduction	Specific				
	Date	Elevation	Water	Elevation	Temp		Oxygen	Potential	Conductivity				
Well	Sampled	(ft)	(ft btc)	(ft)	(°C)	рН	(mg/L)	(mV)	(uS/cm)	(NTU)	Hydraulic Designation	Hydrostratigraphic Unit	Comments
LPLF-1	6/2/20	347.80	58.05	289.75	14.2	6.2	11.81	48	2,741		Up or Cross Gradient	Backfill/Mine Spoils	Sampled via bailer - slow recharge
LPLF-1	10/14/20	347.80	57.87	289.93	12.0	6.7	1.21	-19	3,754		Up or Cross Gradient	Backfill/Mine Spoils	Sampled via bailer - slow recharge
LPLF-5	6/2/20	359.90	12.33	347.57	13.8	6.6	3.62	79	1,460		Upgradient	Backfill/Mine Spoils	
LPLF-5	10/14/20	359.90	DRY								Upgradient	Backfill/Mine Spoils	Dry/no water in well. Not sampled.
LPLF-8	6/2/20	298.75	12.00	286.75	16.6	5.6	1.18	-4	3,405		Downgradient	Backfill/Mine Spoils	
LPLF-8	7/13/20	298.75	12.49	286.26	14.9	5.7	1.51	-14	3,161		Downgradient	Backfill/Mine Spoils	
LPLF-8	10/14/20	298.75	14.20	284.55	13.5	5.8	1.28	-14	4,152		Downgradient	Backfill/Mine Spoils	
LPLF-8	11/11/20	298.75	13.97	284.78	12.5	5.7	1.48	13	3,684		Downgradient	Backfill/Mine Spoils	
LPLF-2R	6/2/20	296.04	4.32	291.72	14.3	6.1	1.22	-6	3,315		Downgradient	Backfill/Mine Spoils	
LPLF-2R	7/13/20	296.04	4.51	291.53	15.8	6.1	1.38	-9	3,306		Downgradient	Backfill/Mine Spoils	
LPLF-2R	10/14/20	296.04	6.00	290.04	13.4	5.8	0.63	7	3,834		Downgradient	Backfill/Mine Spoils	
PLF-2R	11/11/20	296.04	6.12	289.92	11.4	6.1	1.17	17	3,830		Downgradient	Backfill/Mine Spoils	
LPLF-7R	6/2/20	299.00	20.25	278.75	16.8	6.1	1.74	33	2,700		Downgradient	Backfill/Mine Spoils	
LPLF-7R	10/14/20	299.00	22.24	276.76	12.9	6.2	2.24	63	3,273		Downgradient	Backfill/Mine Spoils	
								Water Le	vels Only				
LPLF-2	6/2/20	302.26	11.48	290.78							Cross-Gradient	Backfill/Mine Spoils	
LPLF-2	10/14/20	302.26	14.03	288.23							Cross-Gradient	Backfill/Mine Spoils	
PLF-3	6/2/20	295.64	5.51	290.13							Cross-Gradient	Backfill/Mine Spoils	
PLF-3	10/14/20	295.64	7.12	288.52							Cross-Gradient	Backfill/Mine Spoils	
PLF-4	6/2/20	303.12	2.84	300.28							Cross-Gradient	Backfill/Mine Spoils	
PLF-4	10/14/20	303.12	4.36	298.76							Cross-Gradient	Backfill/Mine Spoils	

Notes:

" -- " = Not applicable, not available, and/or not measured.

Reference point elevation is top of PVC casing; all elevations are in feet above mean sea level (NAVD88).

Field parameter readings represent final stabilized readings obtained during low-flow purge immediately prior to collection of water-quality sample.

ft = feet

ft btc = feet below top of casing

C = degrees celcius

mg/L = milligrams per liter

mV = millivolts

uS/cm = microsiemens per centimeter

NTU = Nephelometric Turbidity Units

Table 3. Groundwater Analytical Summary

2020 Annual Groundwater Monitoring Report for the Limited Purpose Landfill - TransAlta Centralia Mine LLC

Well			LPLF-1	LPLF-5	LPLF-8	LPLF-2R	LPLF-7R	LPLF-8	LPLF-2R	LPLF-1	LPLF-8	LPLF-2R	LPLF-7R	LPLF 8	LPLF 2R
Sample ID			060220-CCR-LPLF1	060220-CCR-LPLF5	060220-CCR-LPLF8	060220-CCR-LPLF2R	060220-CCR-LPLF7R	LPLF-8	LPLF-2R	LPLF 1	LPLF 8	LPLF 2R	LPLF 7R	102319-CCR-LPLF8	102319-CCR-LPLF2R
Sample Date			6/2/2020	6/2/2020	6/2/2020	6/2/2020	6/2/2020	7/13/2020	7/13/2020	10/23/2019	10/14/2020	10/14/2020	10/14/2020	11/11/2020	11/11/2020
Hydraulic Designation			Up or Cross Gradient	Upgradient	Downgradient	Downgradient	Downgradient	Downgradient	Downgradient	Up or Cross Gradient	Downgradient	Downgradient	Downgradient	Downgradient	Downgradient
Analyte	Method	Units													
Boron	EPA 6010C	mg/L	0.64	0.106	1.1	0.4	0.41	1.02	0.35	0.597	1.03	0.349	0.348	1.06	-
Calcium	EPA 6010C	mg/L	222	303	393	478	207	-	-	232	391	494	220	-	-
Chloride	EPA 9056A	mg/L	2.29	2.37	6.37	7.18	8.36	-	-	12	6.5	5.2	7.2	-	-
Fluoride	EPA 9056A	mg/L	1 U	1 U	1 U	1 U	1 U	-	-	2 U	2 U	2 U	2 U	-	-
эΗ	SM 4500H B	unit	6.23	6.6	5.57	6.09	6.09	-	-	6.73	5.75	6.18	6.24	-	-
Sulfate	EPA 9056A	mg/L	1,490	688	2,220	1,740	1,160	-	-	1,530	2,260	1,740	1,120	-	-
Fotal Dissolved Solids	SM 2540C	mg/L	2,770	1470	3,530	3,550	2,300	-	3,750	2,740	3,550	3,450	2,280	-	3,630

Notes:

Field parameters represent final stabilized readings obtained during sampling immediately prior to sample collection. Non-detect values reported as "U" with the laboratory method detection limit; "J" is estimated value as determined from data validation.

(H) for outside holding time for sample

(MS) for matrix spike recovery outside range (FD) Field Duplicate outside relative percentage difference

Acronyms:

Data qualifiers: U = non-detect value, J = estimated value.

C = degrees celcius

mg/L = milligrams per liter

mV = millivolts

uS/cm = microsiemens per centimeter NTU = Nephelometric Turbidity Units

Table 4 Data Validation Summary

2020 Annual Groundwater Monitoring Report for the Limited Purpose Landfill - TransAlta Centralia Mine LLC

Validation Summary 6/2/2020

No discrepancies noted in sample receipt or in analysis. No qualifiers noted in the analysis results Method blank was non-detect

Replicant samples within RPD limit

Matrix Spike recovery within the % recovery limits

Field Duplicate for LPLF-7R, FD RPD within limits

		2-Jun-20		
Parameter	FD RPD Limit	LPLFR-7R	FD	FD RPD
TDS	20	2300	2190	-4.9%
Chloride	20	8.36	7.85	-6.3%
Sulfate	20	1160	1160	0.0%
Boron	20	0.41	0.41	0.0%
Calcium	20	207	205	-1.0%

Validation Summary 7/13/2020

Minor discrepancy noted in sample label, resolved. No data qualifiers noted in the analysis results Method blank was non-detect Matrix Spike recovery within the % recovery limits

Validation Summary 10/14/2020

No discrepancies noted in sample receipt or in analysis. No qualifiers noted in the analysis results Method blank was non-detect Replicant samples within RPD limits Matrix Spike recovery for LPLF-8 calcium exceeded recover limit of 125% with 137% Field Duplicate for LPLF-2R, FD RPD within limits, note large MRL for chloride.

		14-Oct-20			
Parameter	FD RPD Limit	LPLFR-2R	FD	FD RPD	
TDS	20	3450	3710	7.3%	
Chloride	20	5.2	ND (<25)	ND	Method reporting limit on FD was significantly higher
Sulfate	20	1740	1840	5.6%	
Boron	20	0.349	0.346	-0.9%	
Calcium	20	494	481	-2.7%	

Validation Summary 11/11/2020

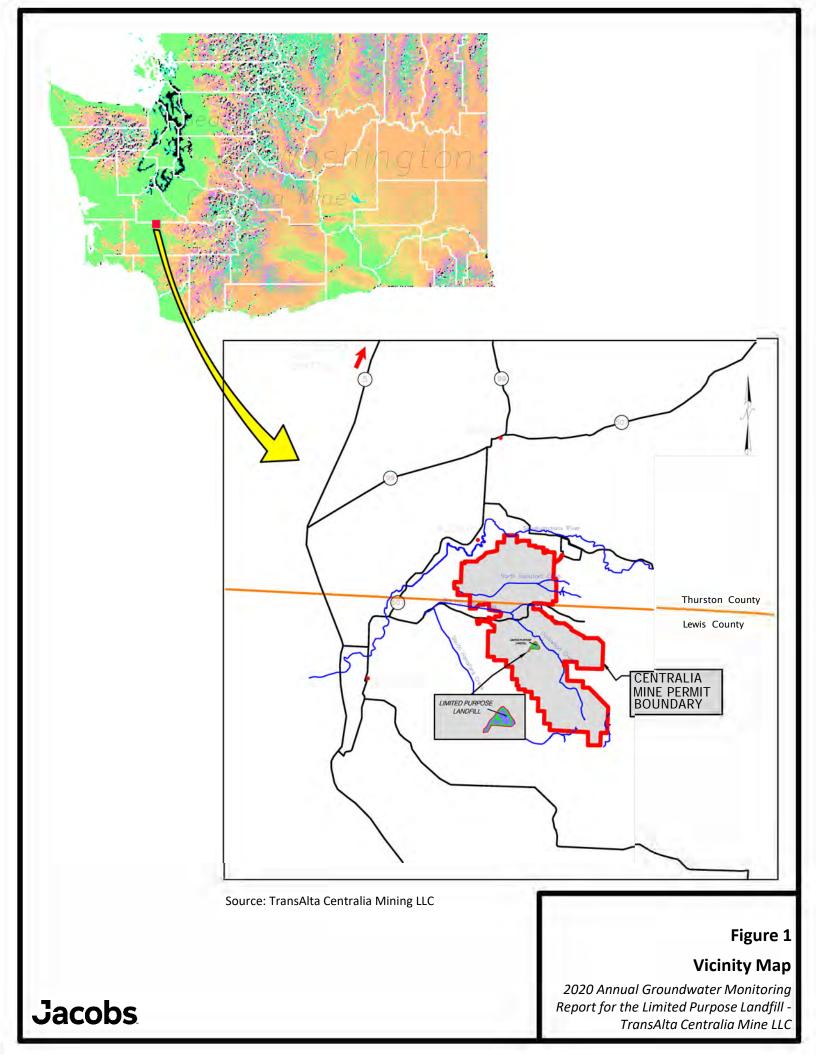
No data qualifiers noted in the analysis results Method blank was non-detect Matrix Spike recovery within the % recovery limits

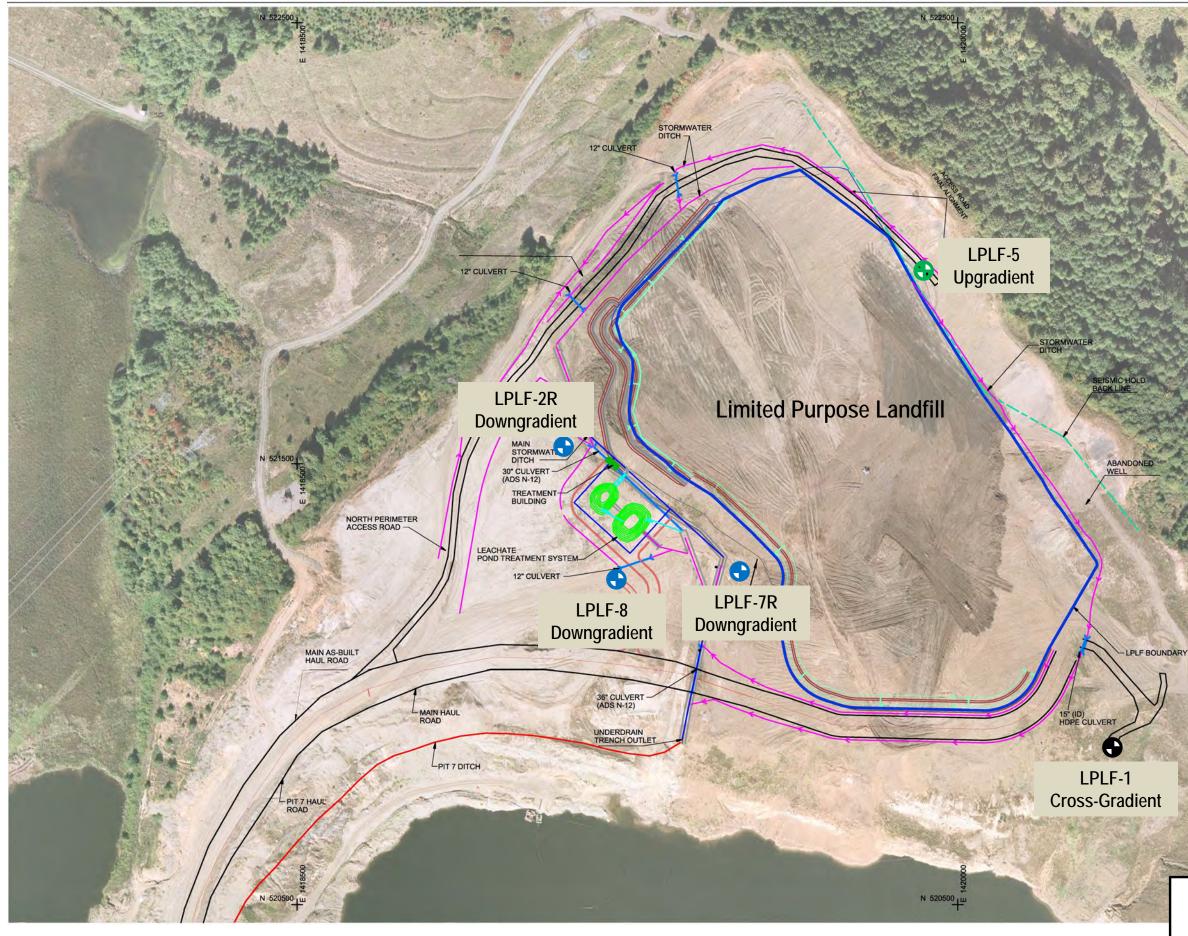
Table 5 Statistical Method for TransAlta Limited Purpose Landfill

		Trending Calculated UPL (if needed) = { Intercept + [Slope* Time(days)] + Residual }					Lower Prediction Levels	Upper Prediction Levels		Calculated Upper Prediction Limits (compliance values)							
Well	Constituent	Units	Method	Trend Removal	Intercept	Slope	Residual	K-Value	(LPL)	(UPL)	_	6/2/2020	7/13/2020	10/14/2020	11/11/2020		
PLF-2R	Boron	mg/L	Parametric UPL	Yes	0.35	-2.21E-05	0.0297	2.4		Calculated		0.351	0.350	0.348	0.347	NA	NA
PLF-2R	Calcium	mg/L	Parametric UPL	Yes				2.4		545						NA	NA
PLF-2R	Chloride	mg/L	Parametric UPL	No				2.4		9.59						NA	NA
PLF-2R	Fluoride	mg/L	DQR	No						DQR						NA	NA
PLF-2R	рН	pH units	Parametric UPL	No				2.79	5.98	7.07						NA	NA
PLF-2R	Sulfate	mg/L	Parametric UPL	No				2.4		2163						NA	NA
PLF-2R	TDS	mg/L	Non-Parametric UPL	Yes	3631	-0.359	201	2.4		Calculated		3367	3352	3319	3309	NA	NA
PLF-7R	Boron	mg/L	Parametric UPL	No				2.4		0.421	_					NA	NA
PLF-7R	Calcium	mg/L	Parametric UPL	No				2.4		263						NA	NA
PLF-7R	Chloride	mg/L	Parametric UPL	No				2.4		9.99						NA	NA
PLF-7R	Fluoride	mg/L	DQR	No						DQR						NA	NA
PLF-7R	рН	pH units	Parametric UPL	No				2.79	6.09	6.99						NA	NA
PLF-7R	Sulfate	mg/L	Parametric UPL	Yes	944	0.758	509	2.4		Calculated		2435	2466	2536	2557	NA	NA
PLF-7R	TDS	mg/L	Parametric UPL	Yes	1890	0.892	607	2.4		Calculated		3652	3689	3772	3797	NA	NA
PLF-8	Boron	mg/L	Parametric UPL	No				2.4		0.99	_					NA	NA
PLF-8	Calcium	mg/L	Parametric UPL	Yes				2.4		441						NA	NA
PLF-8	Chloride	mg/L	Parametric UPL	No				2.4		7.84						NA	NA
PLF-8	Fluoride	mg/L	DQR	No						DQR						NA	NA
PLF-8	pН	pH units	Parametric UPL	No				2.79	5.66	6.36						NA	NA
PLF-8	Sulfate	mg/L	Parametric UPL	Yes	2124	1.14	357	2.4		Calculated		3959	4006	4112	4144	NA	NA
PLF-8	TDS	mg/L	Parametric UPL	Yes	3429	0.49	445	2.4		Calculated		4510	4530	4575	4589	NA	NA
				•				-			start date	da	ays since start				
IME (days) is the period f	rom Nov. 1	4, 2016 to time of comp	liance event.							11/14/2016	1296	1337	1430	1458	-42688	-4268

Table 6 Summary of Compliance Value Exceedance

2020 Annual Groundwater Monitoring Report for the Limited Purpose Landfill - TransAlta Centralia Mine LLC

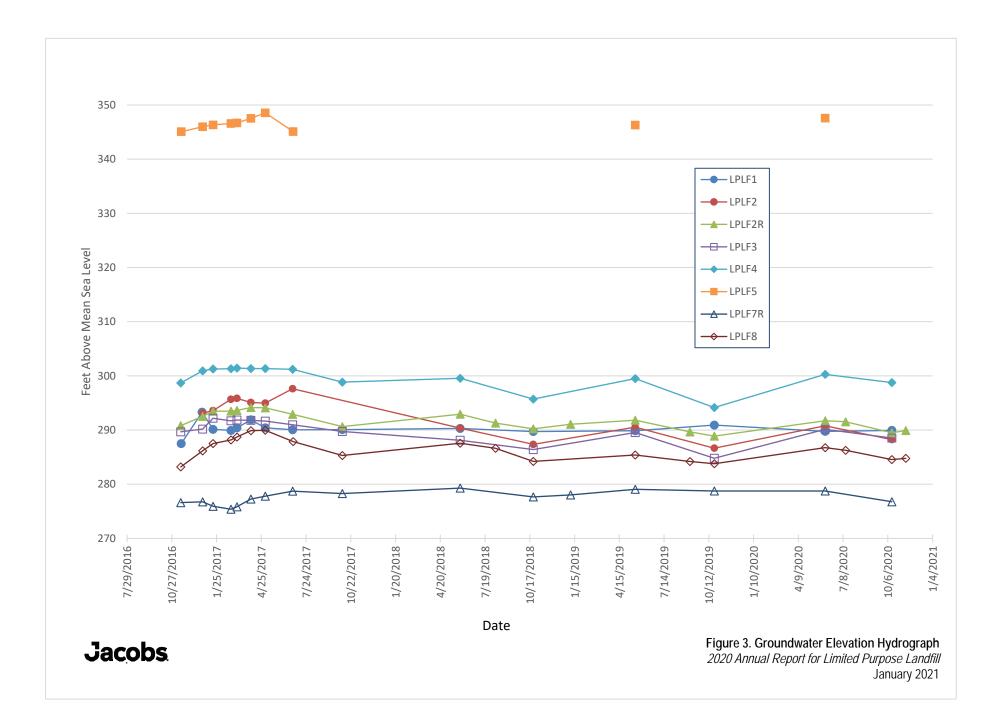

Well	Sample Date Parameter	Upper Limit (mg/L)	Sample Result (mg/L)	Resample Date	Upper Limit (mg/L)	ReTest Result (mg/L)	Percent Over UL for Compliance Event	Percent Over UL for the Retesting Event	Percent Change between Compliance and Retesting Event
LPLF-2R	6/2/2020 Boron	0.35	0.40	7/13/2020	0.35	0.35	14%	0.3%	-12.3%
LPLF-2R	6/2/2020 TDS	3,367	3,550	7/13/2020	3,352	3,750	5%	11.9%	5.6%
LPLF-8	6/2/2020 Boron	0.99	1.10	7/13/2020	0.99	1.02	11%	3.1%	-7.3%
LPLF-2R	10/23/2019 TDS	3,319	3,450	11/11/2020	3,309	3,630	4%	9.7%	5.2%
LPLF-8	10/23/2019 Boron	0.99	1.03	11/11/2020	0.99	1.06	4%	7.1%	2.9%

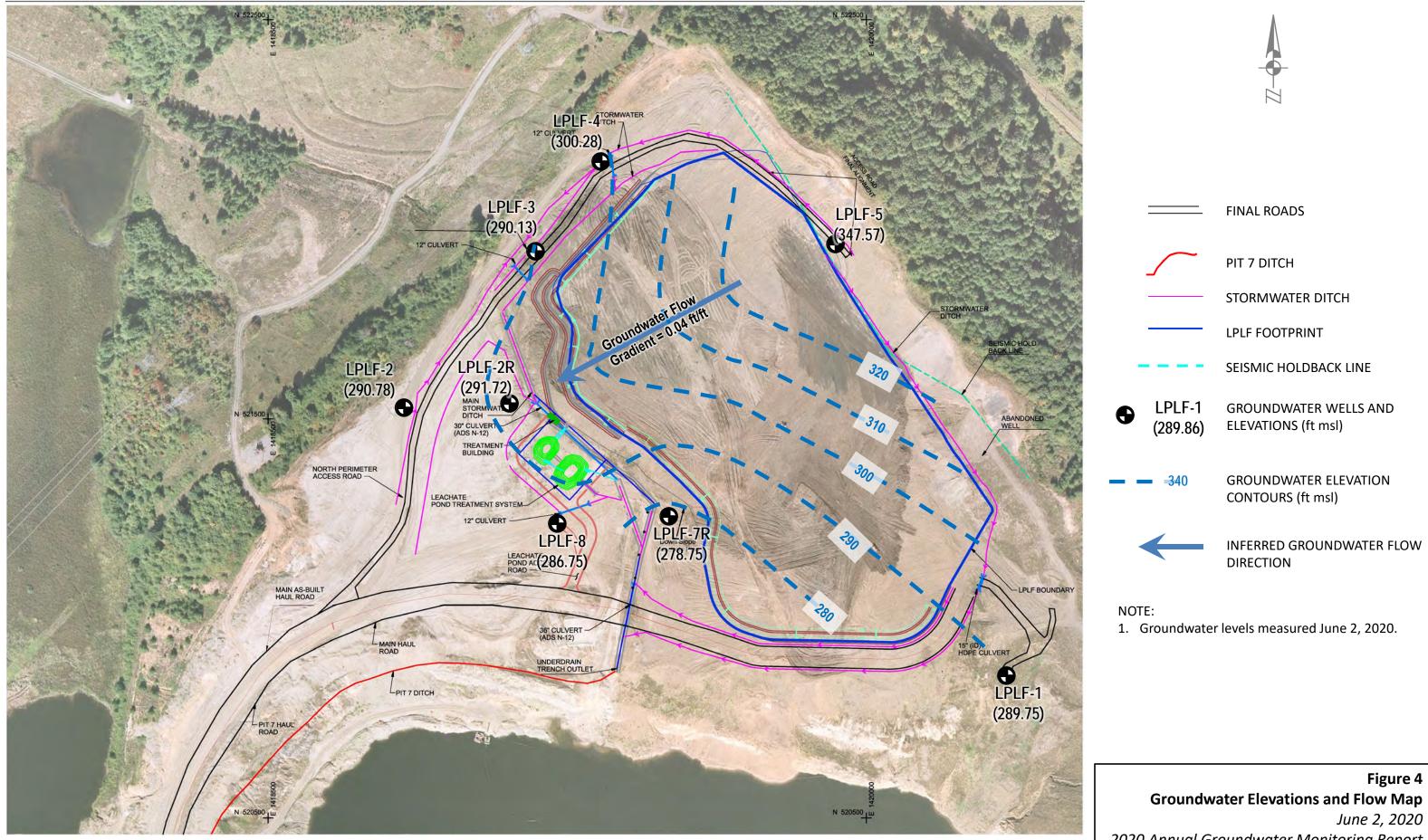

Notes:

Bold parameters indicate calculated limits

Four results (highlighted yellow) were confirmed as statistically-significant exceedances for evaluation.

Figures




Jacobs

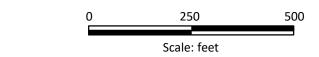
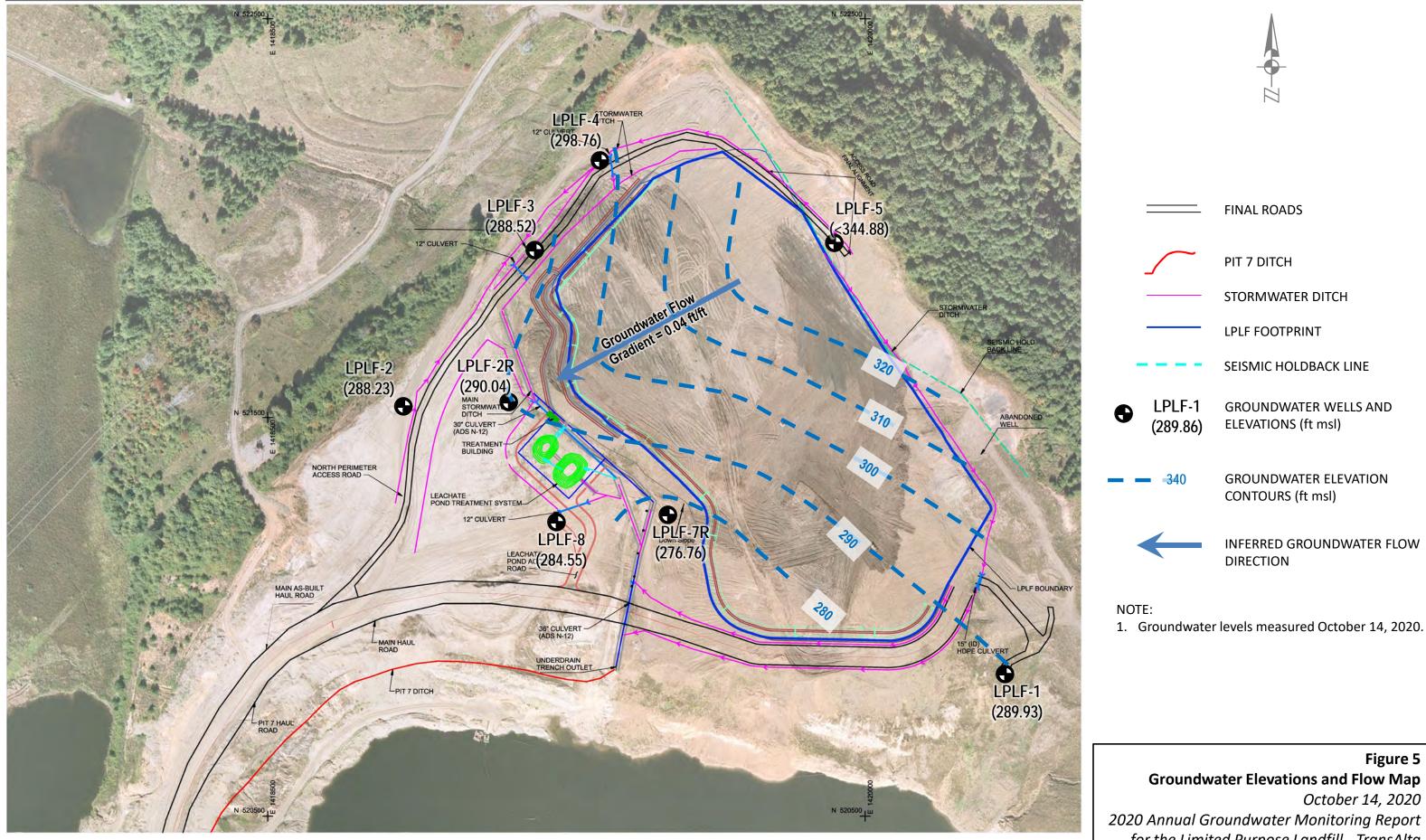
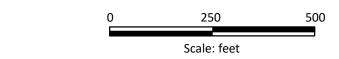
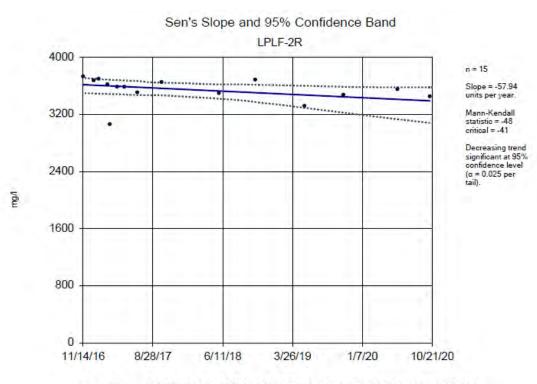


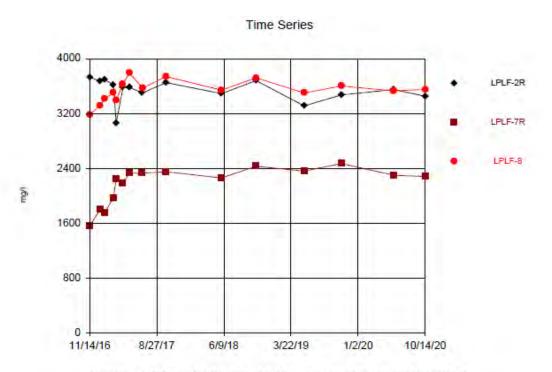
Figure 2 Site Map and Groundwater Monitoring Network 2020 Annual Groundwater Monitoring Report for the Limited Purpose Landfill - TransAlta Centralia Mine LLC





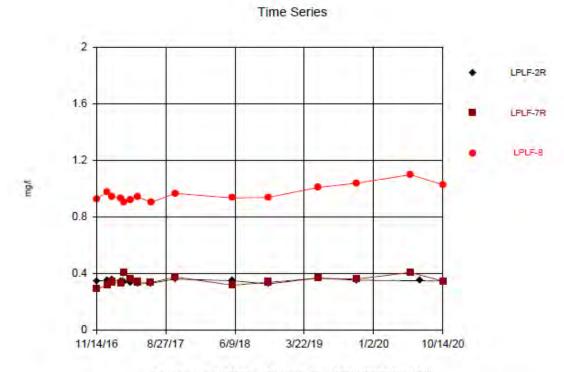
Jacobs


2020 Annual Groundwater Monitoring Report for the Limited Purpose Landfill - TransAlta Centralia Mine LLC

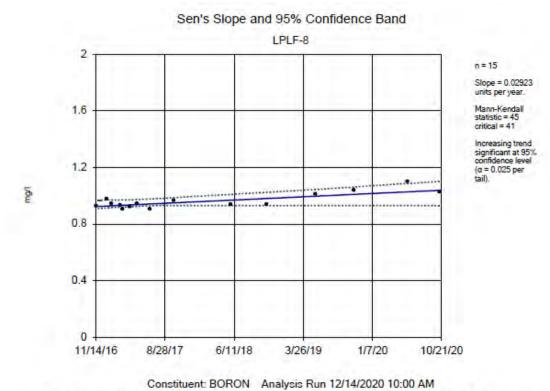


Jacobs

for the Limited Purpose Landfill - TransAlta Centralia Mine LLC



Constituent: TOTAL DISSOLVED SOLIDS Analysis Run 12/14/2020 9:58 AM
TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data: TCM_CCR Downgradient Time Series thru



Constituent: TOTAL DISSOLVED SOLIDS Analysis Run 12/14/2020 9:46 AM
TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data: TCM_CCR Downgradient Time Series thru

Figure 6 LPLF-2R Demonstration Time Series and Trend 2020 Annual Groundwater Monitoring Report for the Limited Purpose Landfill - TransAlta Centralia Mine LLC

TransAlta Centralia Mining LLC Client: TransAlta Centralia Mining LLC Data: TCM_CCR Downgradient Time Series thru

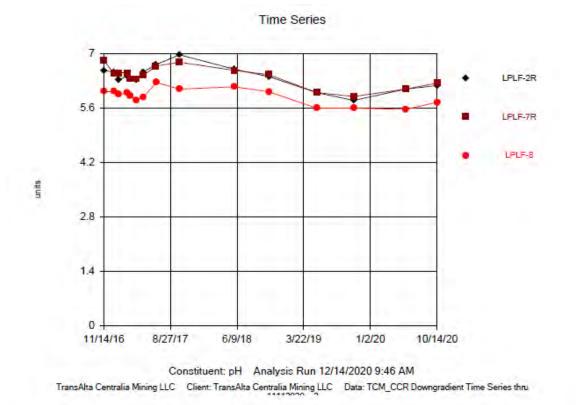


Figure 7 LPLF-8 Demonstration Time Series and Trend 2020 Annual Groundwater Monitoring Report for the Limited Purpose Landfill - TransAlta Centralia Mine LLC

Appendix A Field Forms

SITE: TO	ans Alta (Centralia d	line Pro	ject Number	CCR			Well ID:	LPLFI
Field Team:	Nico	le Bador	1- Jacobs	s, Stere	Mahr-	Trans Alta	a	Date:	6/2/20
Weather/Ter								Time to Well:	0835
Purge Metho	od: 🗌 Blade	der □F	Peristaltic	X Grab	Nother: Be	ailer	Initial DT	W (ft btc):	0835 58.05
Pump Settin	g 5: _N	A		Notes	:				
					Id Parameter				
Time ¹	DTW ²	Purge Vol. (gal)	рН	Sp. Cond. (mS/cm)	DO (mg/L)	Temp (°C)	ORP (mV)	Turbidity (NTU)	Note color, odor, etc.
	Begin Pumpin	g							
0844			6.23	2741	11.81	14:2	48.1	-	Cleaw-
							1		
							1		
Stabilization							The second second		
Criteria ³		-	± 0.1 units	± 3%	± 0.3 mg/L		± 10 mV	± 10% ⁴	
³ Stabilization achi ⁴ For turbidity read		ive readings for Lov ⁵ Low-flow target (v-Flow method; min ourge rate is 0.1 - 0.	imum parameter s	ubset: pH, sp. cond.,	down should not exe and turbidity or DO		-Flow method Sample Time:	0850
Analysis:	Appendix III (boron, calcium, (total metals, Ra	chloride, fluorid		and TDS)				
QC SAMPLE		eld Duplicate		INSD 🗆	EQ Rinsate B	lank	TOTAL PUR	GED (GAL):	2 bailers ful
QC Sample I	D:						QC	Sample Time:	
Comments:	085	3, Comp	lote Scin	upling					

SITE: T	ransAlta	.Contralia	Mine Pro	ject Number	CCR		_	Well ID:	LPLF-Z
Field Team:	Ne	cole Bad	on (Jacob	s), Steve	Mahr (Tra	ans Alta)	Date:	6/2/20
Weather/Ter	mp: p	artly cl	oudy, C	00			Arrival	Time to Well:	09:56
Purge Metho								ΓW (ft btc):	11.48 Ft
Pump Settin	g ⁵ :	NA		Notes	: Waf	er Lei	iel On	14	
				Fie	d Parameters	;			
Time ¹	DTW ²	Purge Vol. (gal)	pН	Sp. Cond. (mS/cm)	DO (mg/L)	Temp (°C)	ORP (mV)	Turbidity (NTU)	Note color, odor, etc.
	Begin Pumpir	ng							1
		NAC							
			-	10			/		
						/		1	
				/					
									1
		/							
	/								
Stabilization Criteria ³	1		± 0.1 units	± 3%	± 0.3 mg/L	-	± 10 mV	± 10% ⁴	
¹ Collect field para		3-5 minute intervals			² DTW: Total drawd	own should not ex	ceed 0.33 ft for Low	-Flow method	
⁴ For turbidity read			v-Flow method; mini urge rate is 0.1 - 0.5		ubset: pH, sp. cond., a 3 gal/min)	ind turbidity or DO			
Sample ID:		NA					. (Sample Time:	NA
		(boron, calcium,			and TDS)				
		(total metals, Ra y		and the state of t					
QC SAMPLE		eld Duplicate			EQ Rinsate Bl	ank	TOTAL PUR	GED (GAL):	C
QC Sample II	D:							Sample Time:	
Comments:									

SITE: TO	ansAlta	Centralia		Well ID: LPLF-3					
Field Team:	Nicol	le Badon	(Jacobs)	Store M	ahr (Tran	sAlta)	_	Date:	6/2/20
Weather/Ter		ly claud						Time to Well:	0952
Purge Metho		-		Grab	⊡Other:}	JA	Initial DT	W (ft btc):	5,51 ft
Pump Settin	g5: NA			Notes	Water	evel c	only		
				Fie	Id Parameters		,	S	
Time ¹	DTW ²	Purge Vol. (gal)	рН	Sp. Cond. (mS/cm)	DO (mg/L)	Temp (°C)	ORP (mV)	Turbidity (NTU)	Note color, odor, etc.
	Begin Pumpir	ng					_		
									· · · · · · · · · · · · · · · · · · ·
						/			
						/			
				-					
	1			NIA			-		
				1					
				11					
		/					1	1	
	/								
Stabilization								-	
Criteria ³			± 0.1 units	± 3%	± 0.3 mg/L	+	± 10 mV	± 10% ⁴	
	ameters in consistent lieved after 3 succes				² DTW: Total drawd subset: pH, sp. cond., a		xceed 0.33 ft for Low O	-Flow method	
⁴ For turbidity read	dings > 10 NTUs	⁵ Low-flow target p	ourge rate is 0.1 - 0.5	5 L/min (0.03 - 0.1	3 gal/min)				
Sample ID:	NJY	4						Sample Time:	NR
Analysis:		(boron, calcium,			and TDS)				
	Other, speci	(total metals, Ra	adium 226, and F						
QC SAMPLE		ield Duplicate		10 T Z] EQ Rinsate Bl	ank	TOTAL PUF	RGED (GAL):	
QC Sample								Sample Time:	
Comments:							-		
Johnneina.									

SITE: Tra	ansAlta (entralia	Well ID: LPLF-4						
Field Team:	Nicole	Badan (Jacobs),	Steve 1	Ughr (Trai	sAlta)		Date:	6/2/20
Weather/Ter		Hy Clou						Time to Well:	0948
Purge Metho		9	-	□Grab	□Other:	U/A	Initial DT	W (ft btc):	2.84 FE
Pump Settin	g 5: N)r	ł		Notes	: Water	level on	dy		
				Fie	Id Parameter	and the second se			
Time ¹	DTW ²	Purge Vol. (gal)	рН	Sp. Cond. (mS/cm)	DO (mg/L)	Temp (°C)	ORP (mV)	Turbidity (NTU)	Note color, odor, etc.
	Begin Pumpin	g							
		(NIA							
			/						
						/			
				/					
			/						
			/						
						*			
1-11									
1									
Stabilization Criteria ³			± 0.1 units	± 3%	± 0.3 mg/L		± 10 mV	± 10% ⁴	· · ·
¹ Collect field para	meters in consistent ieved after 3 success						ceed 0.33 ft for Low	-Flow method	
⁴ For turbidity read			ourge rate is 0.1 - 0.						
Sample ID:	N)r	4						Sample Time:	NA
	Appendix III ((total metals, Ra			and TDS)				
QC SAMPLE	Other, specif	y eld Duplicate			EQ Rinsate B	lank		RGED (GAL):	
QC Sample I								Sample Time:	5 2
Comments:								and the funder	

Groundw	ater Purging	and	Sampling	Form
1 alling	D. L. M. L.	0.	Ð	

Veather/Ter		udy, Cool			5.1			Time to Well:	
Purge Metho			eristaltic	□Grab	Other:		Initial DT	W (ft btc):	12:33
Pump Settin	g ⁵ : <u>100</u>	ML/Min		Notes:	-				_
		Purge Vol.	-	Fiel Sp. Cond.	d Parameter DO	S Temp	ORP	Turbidity	_
Time ¹	DTW ²	(gal)	рН	(mS/cm)	(mg/L)	(°C)	(mV)	(NTU)	Note color, odor, o
OGIS	Begin Pumpi	ng					029		
0.922	12.58	-100 ML	6.57	1490	5.28	14.1	\$3.9	+	Clear
0927	12.61	1200 ML	6.61	1476	4.23	13.9	80.2		Clear
0932	12.68	1700 ML	6.60	1460	3.62	13.8	78.6	-	Clear
			(is- #						E.E.
Stabilization Criteria ³	•	•	± 0.1 units	± 3%	± 0.3 mg/L	4	± 10 mV	± 10% ⁴	÷
Stabilization achi For turbidity read	ieved after 3 succes lings > 10 NTUs	t 3-5 minute intervals sive readings for Lov ⁵ Low-flow target p - CCP - LF	v-Flow method; min ourge rate is 0.1 - 0.	imum parameter su	ubset: pH, sp. cond.,			-Flow method Sample Time:	0935
Analysis:	Appendix III	(boron, calcium, (total metals, Ra	chloride, fluorid		and TDS)		_		

SITE: TY	ans Pilta (Centraliar	line Pro		Well ID: LPLF2P				
Field Team:	Nico	le Bado	Gacobs), steve 1	Mahr (Tra	ns:Alta)	_	Date:	6/2/20
Weather/Ter		,505-6		/				Time to Well:	1002
Purge Metho					Other:		Initial DT	W (ft btc):	4.32'
Pump Settin	g ⁵ : (00	al Imin		Notes:					
					d Parameter				
Time ¹	DTW ²	Purge Vol. (gal)	рН	Sp. Cond. (mS/cm)	DO (mg/L)	Temp (°C)	ORP (mV)	Turbidity (NTU)	Note color, odor, etc.
1004	Begin Pumpir	ng						_	
1012	4.50	800	6.26	3268	5.50	13,8	15.1		Clear
1017	4.53	1300	6.12	3260	2.04	13.6	-8.5		Clear
1022	4.57	1800	6.11	3281	1.33	14.0	-9.0	.—	Clear
1027	4.61	2300	6.09	3315	1.22	14.3	-6.3	-	Clear
									·
							-		
								1.1.1	
							1.11		
						1			
Stabilization Criteria ³	- 20	<u>.</u>	± 0.1 units	± 3%	± 0.3 mg/L	÷	± 10 mV	± 10% ⁴	
¹ Collect field para	meters in consistent ieved after 3 success						ceed 0.33 ft for Low	-Flow method	
⁴ For turbidity read				.5 L/min (0.03 - 0.13		and torbiolity of DC			
Sample ID:	HO 0	60220 - 6	CR-LPL	F2R			_ :	Sample Time	1030
Analysis:	Appendix III				and TDS)				
	Appendix IV Other, specil		adium 226, and	Radium 228).					
QC SAMPLE	: 🗆 Fi	eld Duplicate	K MS/	MSD 🗆	EQ Rinsate E	Blank	TOTAL PUF	RGED (GAL)	2300 ML
QC Sample I	D: 0602	20 - 0612-	LPLF2R-1	45, 06022	20-CCR-L	PLF2R-M	SD QC	Sample Time	1030
Comments:		- Comple		,					
		1		1					

SITE: Tra	ns Alta Cen	tralia Mine	Pro	ject Number:	CCR		_	Well ID:	LPLF 77
Field Team:	Nicol	e Badan	(Jacobs)	Steve Mc	the (Tran	siAlta)			10/2/20
Weather/Ter		ly cloude	/					Time to Well:	1101
Purge Metho			Peristaltic		Other:			W (ft btc):	20,25
Pump Settin	g 5: ~75 M	Umin, rea	divert to 1	COm / Notes:					
			-	Field	d Parameter		1		
Time ¹	DTW ²	Purge Vol. (gal)	pН	Sp. Cond. (mS/cm)	DO (mg/L)	Temp (°C)	ORP (mV)	Turbidity (NTU)	Note color, odor, etc.
1103	Begin Pumpin	ng		·			-		
1111	N300MU	> wait	for bea	Ker to fil	1 For par	meters -			
1115	20.57	FOOML	6.26	27107	4.06	17.4	14.2	-	Clear
1120	20.64	1200	6.16	2739	3.12	17.1	18.4	-	clear
1125	20:74	1700	6.13	2706	2.32	16.6	27.1	-	Clear
1130	20.81	2200	6.09	2700	1.74	16.8	32.9	_	Clear
				_					
	1.00								
Stabilization Criteria ³	1.4	-	± 0.1 units	± 3%	± 0.3 mg/L	+	± 10 mV	± 10% ⁴	
¹ Collect field para	meters in consistent						xceed 0.33 ft for Low	-Flow method	
⁴ For turbidity read	ieved after 3 success dings > 10 NTUs	•		0.5 L/min (0.03 - 0.13	and the second se	, and turbidity of Di	5		
Sample ID:	000000 -	CCR-LPI	FFR				_ :	Sample Time	1130
Analysis:				de, pH, sulfate, a	nd TDS)				
	Appendix IV Other, specif	and the second second	adium 226, and	Radium 228).					
QC SAMPLE		eld Duplicate	□ MS/	MSD 🗆	EQ Rinsate B	Blank	TOTAL PUF	RGED (GAL)	2200 ML
QC Sample		.20-CCR-						Sample Time	
Comments:	0000			ng, final	BALLE '	21,00'+	.		
		- post	- Jacob Ch	,,					

SITE: TT	ans Alta	Centralia	Well ID: LPLF8						
Field Team:	Nico	le Badon	-Jacobs	Stever	ahr-Tra	nstita	_	Date	6/2/20
Weather/Ter		tly clou	1.000					Time to Well:	1200
Purge Metho		<u> </u>	eristaltic		□Other:			W (ft btc):	
Pump Settin	g ⁵ : 100	mL/Min		Notes:					
_				Contraction of the second	d Parameter				
Time ¹	DTW ²	Purge Vol. (gal)	pН	Sp. Cond. (mS/cm)	DO (mg/L)	Temp (°C)	ORP (mV)	Turbidity (NTU)	Note color, odor, etc.
1200	Begin Pumpir	ng							
1209	12.72	900ml	5:72	3468	3.07	16.7	-10.3	_	clear
1214	13.10	1400ML		3404	1.64	16,3	-7.0		Clear
1219	13.22	142.000.000		3406	1.31	16.2	-5.7	-	clear
1224	13,37	2400ml	5,57	3405	1.18	16.6	-4.3	-	Clear
				1 4				1	
					1				
L									
		1							
1				1					
								100	
Stabilization Criteria ³	•	,	± 0.1 units	± 3%	± 0.3 mg/L		± 10 mV	± 10% 4	•
¹ Collect field para		t 3-5 minute intervals sive readings for Lov					xceed 0.33 ft for Low	-Flow method	
⁴ For turbidity read				5 L/min (0.03 - 0.13					
Sample ID:	060220	-CCR-L	PLF8				_ :	Sample Time	1225
		(boron, calcium,			ind TDS)				
	Appendix IV Other, specil	(total metals, Ra	dium 226, and l	Radium 228).					
QC SAMPLE		eld Duplicate	□ MS/N	MSD 🗆	EQ Rinsate E	llank	TOTAL PUF	RGED (GAL)	2,400 ML
QC Sample I	D:								
Comments:	Com	plete Say	moling at	- 12:31	Final t	JTN= 13,	52'+00		
			it ing as	/	H Bac				

SITE:	TCM		Proj	ject Number:	CC	R		Well ID:	LPLF-2R
Field Team:	5	, Mah	c	-				Date:	7/13/20
Weather/Te	mp: 🥂 🙋	lear,	Warm				Arrival	Time to Well:	8:50
Purge Metho	od: 🗌 Blad	der 🖾	Peristaltic	Grab	Other:				4.51
Pump Settin	g ⁵ : /c	>0m1/	min	Notes:					
				Field	d Parameters	The second s			
Time ¹	DTW ²	Purge Vol. (ml)	рН	Sp. Cond. (uS/cm)	DO (mg/L)	Temp (°C)	ORP (mV)	Turbidity (NTU)	Note color, odor, etc.
855	Begin Pumpin	ng							
900	4.59	500	6.13	3290	5.31	15.7	4.8		Clear
905	4.64	1000	6.10	3292	1.68	15.6	-1.9	-	Clear clear clear
910	4.68	1500	6.07	3306	1.38	15.8	- 8.7		Clear
		_		_					
									1
Stabilization Criteria ³	-		± 0.1 units	± 3%	± 0.3 mg/L		± 10 mV	± 10% ⁴	
	meters in consistent eved after 3 success	sive readings for Lo	w-Flow method; mir	nimum parameter si	ubset: pH, sp. cond.		ceed 0.33 ft for Lov O	v-Flow method	
⁴ For turbidity read Sample ID:			ourge rate is 0.1 - 0.					Sample Time:	9:10
	LPLF		ablasida Dravid					ample time.	(.10
	Appendix III (and TDS)				
	Other, specif	y Boror	1, TD	5					
QC SAMPLE	: 🗌 Fie	eld Duplicate		ASD 🗆	EQ Rinsate B	lank	TOTAL PU	JRGED (ml):	
QC Sample I	D:						QC	Sample Time:	
Comments:	-								

SITE: TCM Project Number: CCR								Well ID:	LPLF-8
Field Team:	_ 5	, Mah	\sim						7/13/20
Weather/Ter	mp:	lesv.	Warn	L			Arrival -	Time to Well:	9:35
Purge Metho			Peristaltic		Other:				12.49
Pump Settin	g ⁵ :			Notes	:				
	-			Fie	Id Parameters				
Time ¹	DTW ²	Purge Vol. (ml)	pН	Sp. Cond. (uS/cm)	DO (mg/L)	Temp (°C)	ORP (mV)	Turbidity (NTU)	Note color, odor, etc.
9:40	Begin Pumpin	g							
9:45	12.84	500	5.75	3262	3.20	15.1	-8.2		clear
9:50	13.08	1000	5.73	3202	1.83	14.9	-11.4		Clear Clear Clear
9:55	13.33	1500	5.70	3/61	1.51	14.9	-14.0		Clear
								4	
	· · · · · · · · · · ·								
									1
Stabilization Criteria ³			± 0.1 units	± 3%	± 0.3 mg/L		± 10 mV	± 10% ⁴	
¹ Collect field para	meters in consistent						xceed 0.33 ft for Low	-Flow method	
⁴ Stabilization achi ⁴ For turbidity read			w-Flow method; mir ourge rate is 0.1 - 0.		subset: pH, sp. cond., 13 gal/min)	and turbidity or E	00		
Sample ID:	LPL	F-8					_ 5	Sample Time:	9:55
Analysis:	Appendix III (boron, calcium,	chloride, fluorid	le, pH, sulfate,	and TDS)				
	Appendix IV (Radium 228).					
QC SAMPLE		eld Duplicate			EQ Rinsate Bl	ank	TOTAL DI		
QC SAMPLE		eiu Duplicate				ally		JRGED (ml): Sample Time:	-
	· · · · · · · · · · · · · · · · · · ·						-	campic rine.	
Comments:									

SITE:	ITE: TCM Project Number: CCR							Well ID: LPLF				
Field Team:		SM							19/14/2020			
Weather/Te	mp: <u>Cl</u>	ondy 11	sindy,	cool			Arrival		8:30			
Purge Meth				Grab					57.87			
Pump Settir	g ⁵ :	NIA		Notes	Bail	$er C^3$	5		51101			
				Fie	Id Parameter			-				
Time ¹	DTW ²	Purge Vol. (ml)	рН	Sp. Cond. (uS/cm)	DO (mg/L)	Temp (°C)	ORP (mV)	Turbidity (NTU)	Note color, oday, sta			
340	Begin Pumpin	ng			(()	(iiiv)	(((10)	Note color, odor, etc.			
340			6.73	3754	1.21	12.0	-18.7	1	Clark			
	58.60						10.1		Cloudy			
					1							
							-					
			(
_												
						1		-				
								-				
Stabilization Criteria ³		•	± 0.1 units	± 3%	± 0.3 mg/L		± 10 mV	± 10% ⁴				
Collect field param	eters in consistent 3-	5 minute intervals	for Low-Flow meth-	od	² DTW: Total drawdo bset: pH, sp. cond., a	wn should not exe	ceed 0.33 ft for Low-	and the second s				
For turbidity reading	gs > 10 NTUs 5	Low-flow target pu	rge rate is 0.1 - 0.5	5 L/min (0.03 - 0.13	dset: pH, sp. cond., a gal/min)	and turbidity or DC)					
ample ID: _							Sa	mple Time:	8:40			
	Appendix III (bo				nd TDS)							
	Appendix IV (to Other, specify _		lium 226, and F	Radium 228).								
C SAMPLE :				00 -								
C SAMPLE :		d Duplicate	□ MS/M	รม 📋 เ	EQ Rinsate Bla	nk	TOTAL PUF		-			
							QC Sa	ample Time:				
omments:	-											

SITE:	TCM	_	Pro	ject Number	CCR		<u>.</u>	Well ID:	LPLFZR
Field Team:	4	SM						Date:	12/14/20
Neather/Te	mp: P	Sunny,	windy .	cool			Arrival	Time to Well:	913
Purge Meth					Other:				6.54
Pump Settir	ng ⁵ : //	60 ml/m	m	Notes	;				
				Fie	ld Parameter	S			
Time ¹	DTW ²	Purge Vol. (ml)	рН	Sp. Cond. (uS/cm)	DO (mg/L)	Temp (°C)	ORP (mV)	Turbidity (NTU)	Note color, odor, etc
917	Begin Pumpii	ng	-	1			1		
922	6.65	400	6.26	4244	3.25	13.8	-9.9		Clear
927	6.69	700	6.22	4233	1.21	13.8	- 8.5		clear
932	6.75	1100	6.18	4241	1.56	13.9	-9.9		Clear Clear Clear
stabilization Criteria ³			± 0.1 units	± 3%	± 0.3 mg/L		± 10 mV	± 10% ⁴	
		ive readings for Lov ⁵ Low-flow target p		nimum parameter s	ubset: pH, sp. cond.,	own should not ex and turbidity or D			932
[Appendix III (Appendix IV (Other, specify	total metals, Ra	dium 226, and I	Radium 228).					
C SAMPLE	: 🕅 Fie	eld Duplicate		ISD 🗆	EQ Rinsate Bl	ank	TOTAL PU	IRGED (ml):	
C Sample II	D:	PLFZR	FD				QC S	Sample Time:	938
omments:									

1

SITE: TCM Project Number: CCR							Well ID: LPLF2				
Field Team:		sm							10/14/20		
			Rain				Arrival		1146		
	od: 🗆 Blad				Other:		Initial DTW (ft btc): 14.03				
Pump Settir	g ⁵ :	NIA		Notes:	W.	ater 1	evel a	nly			
122				Field	d Parameters						
Time ¹	DTW ²	Purge Vol. (ml)	рН	Sp. Cond. (uS/cm)	DO (mg/L)	Temp (°C)	ORP (mV)	Turbidity (NTU)	Note color, odor, etc.		
	Begin Pumpii	ng		-	- I	_					
/								-			
						n -					
-											
								-			
				1							
			_								
-											
<u>}</u>							1				
							1				
Stabilization Criteria ³			± 0.1 units	± 3%	± 0.3 mg/L		± 10 mV	± 10% ⁴			
¹ Collect field par	ameters in consister	nt 3-5 minute interva	s for Low-Flow met	hod	² DTW: Total draw			w-Flow method			
	nieved after 3 succes dings > 10 NTUs		w-Flow method; min purge rate is 0.1 - 0		subset: pH, sp. cond. 3 gal/min)	, and turbidity of L	0				
Sample ID:		_			_			Sample Time:			
Analysis:	Appendix III	(boron, calcium	, chloride, fluorid	de, pH, sulfate,	and TDS)						
		(total metals, R									
	Other, spec	ify									
QC SAMPLI	E: □F	ield Duplicate	⊡ MS/I	MSD 🗌	EQ Rinsate B	lank	TOTAL PURGED (ml):				
QC Sample	ID :						QC	Sample Time:			
Comments:	1.										

Field Team: Sm. Neather/Temp: Cloudy, Rain Purge Method: Bladder Peristaltic Purge Method: Bladder Purge Vol. Notes: Time 1 DTW ² Purge Vol. pH (us/cm) (mg/L) (°C) Begin Pumping Image: Cloudy and the second sec	Initial D	Date: Time to Well: TW (ft btc):	LPLF3 : 10/14/20 : 1142 : 7.12 Note color, odor, etc
Weather/Temp: Cloudy Rain Purge Method: Bladder Peristaltic Grab Other: Pump Setting ⁵ : N/A Notes: $Water$ Field Parameters Time ¹ DTW ² Purge Vol. PH Sp. Cond. DO Temp (uS/cm)	Initial D	TW (ft btc):	7.12
Purge Method: Bladder Peristaltic Grab Other: Pump Setting ⁵ : Notes: Notes: Notes: Field Parameters Field Parameters Time ¹ DTW ² (ml) pH (uS/cm) (mg/L) (°C)	Initial D	TW (ft btc):	7.12
Field Parameters Purge Vol. Sp. Cond. DO Temp Time ¹ DTW ² (ml) pH (uS/cm) (mg/L) (°C)	ORP	Turbidity	
Field Parameters Purge Vol. Sp. Cond. DO Temp Time ¹ DTW ² (ml) pH (uS/cm) (mg/L) (°C)	ORP	Turbidity	
Time 1 DTW 2 (ml) pH (uS/cm) (mg/L) (°C)		the second se	Note color, odor, etc
Begin Pumping			
		-	
	1		
	-		
Stabilization			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	± 10 mV	± 10% ⁴	
Collect field parameters in consistent 3-5 minute intervals for Low-Flow method ² DTW: Total drawdown should no Stabilization achieved after 3 successive readings for Low-Flow method; minimum parameter subset: pH, sp. cond., and turbidity of For turbidity readings > 10 NTUs ⁵ Low-flow target purge rate is 0.1 - 0.5 L/min (0.03 - 0.13 gal/min)	r DO	w-Flow method Sample Time	ŧ
nalysis: Appendix III (boron, calcium, chloride, fluoride, pH, sulfate, and TDS)			
Appendix IV (total metals, Radium 226, and Radium 228).			
Other, specify			
QC SAMPLE : Field Duplicate MS/MSD EQ Rinsate Blank	TOTAL P	URGED (ml)	:
QC Sample ID :		Sample Time	
Comments:			

and the state	1		FIUJE	Project Number: CCR Well ID: LPLF4						
ield Team:		SM				Date: 10/14/20				
Veather/Te	mp: C	sm loudy,	rain				Arrival T	ime to Well:	1137	
Purge Meth		dder 🛛 F			Other:	Initial DT	N (ft btc):	1137 4.36		
Pump Settir	ig ⁵ :	NIA		Notes:	Wat	er Lei	vel only	1		
				Fiel	d Parameters	i	the second second			
Time ¹	DTW ²	Purge Vol. (ml)	рН	Sp. Cond. (uS/cm)	DO (mg/L)	Temp (°C)	ORP (mV)	Turbidity (NTU)	Note color, odor, etc.	
	Begin Pumpi	ing						-		
1		1.77			1.11					
				112.6						
	5					£				
	1.		/							
		1		-		1				
						Terra I				
			1							
	-					X	1	a. 19 3.		
								/		
Stabilization			± 0.1 units	± 3%	± 0.3 mg/L		± 10 mV	± 10% ⁴		
Criteria ³	ameters in consiste	ent 3-5 minute interva				down should not e	xceed 0.33 ft for Low	-Flow method		
³ Stabilization ac	hieved after 3 succe adings > 10 NTUs	essive readings for Lo	ow-Flow method; mir purge rate is 0.1 - 0.	imum parameter	subset: pH, sp. cond 13 gal/min)	., and turbidity or [00			
Sample ID:	1. A	Low-now target					5	Sample Time		
	7						-			
Analysis:	Appendix I	II (boron, calcium V (total metals, R 	adium 226, and	Radium 228).						
QC SAMPL		cify			EQ Rinsate E	Blank	TOTAL PI	JRGED (ml)	f.	
QC SAMPL		ieiu Duplicate					TOTAL PURGED (ml): QC Sample Time:			
Comments:							-			
comments.										

SITE:	SITE: <u>tcm</u> Project Number: <u>CcR</u>											
Field Team: 5m								Date: 10/15/120				
Weather/Ter	mp:	Cloud	4. WI	ndy			Arrival	Time to Well:	900			
Purge Metho					Other:		Initial DT	W (ft btc):	900 Dry 16.2			
Pump Settin	g ⁵ :	ALA		Notes	: <u> </u>	Dry			,			
				Fie	Id Parameters							
Time ¹	DTW ²	Purge Vol. (ml)	pН	Sp. Cond. (uS/cm)	DO (mg/L)	Temp (°C)	ORP (mV)	Turbidity (NTU)	Note color, odor, etc.			
	Begin Pumpii	ng					1					
· · · · · ·		1.11										
	•					1000						
							-					
						-						
_		1										
					h			1				
						(
		11 Mar 12										
-							11 11	- 1				
				1								
							-					
2 P												
			·				-					
Stabilization Criteria ³			± 0.1 units	± 3%	± 0.3 mg/L		± 10 mV	± 10% ⁴				
Collect field parar			s for Low-Flow meth w-Flow method: min		² DTW: Total drawdo subset: pH, sp. cond.,		exceed 0.33 ft for Low	-Flow method				
For turbidity read			purge rate is 0.1 - 0.			and tarbidity of						
ample ID:			_				- 8	Sample Time:				
nalysis: [Appendix III	(boron, calcium	chloride, fluorid	e, pH, sulfate	, and TDS)							
I	Appendix IV	(total metals, R	adium 226, and I	Radium 228).								
[Other, specif	у										
C SAMPLE	: 🗌 Fie	eld Duplicate	☐ MS/N	ISD 🗆	EQ Rinsate Bla	ank	TOTAL PL	JRGED (ml):				
C Sample II): 						QC	Sample Time:				
comments:												

SITE:	TOM		Proj	ect Number:	CCR	3		Well ID:	LPLF 7R		
ield Team:	4	sm							12/14/20		
Veather/Ter			, Caol								
urge Metho		der 🔼 🖪			Other:				22.24		
ump Settin	g ⁵ : _/o	om/m		Notes:							
		1		Field	d Parameters	3					
Time ¹	DTW ²	Purge Vol. (ml)	рН	Sp. Cond. (uS/cm)	DO (mg/L)	Temp (°C)	ORP (mV)	Turbidity (NTU)	Note color, odor, etc		
958	Begin Pumpin	g				_					
1003	22.28	300	6.44	3331	1.89	13.2	40.0		Cleer		
1008	22.38	750	6.29	3285	1.57	13.0	50.2	in de	clear		
1013	22.46	1100	6.24	3273	2.24	12.9	63.1		Clear clear clear		
Stabilization Criteria ³			± 0.1 units	± 3%	± 0.3 mg/L		± 10 mV	± 10% ⁴			
Stabilization achi For turbidity read ample ID: analysis:	meters in consistent ieved after 3 success lings > 10 NTUs Appendix III (Appendix IV (Other, specify	ive readings for Lcc ⁵ Low-flow target boron, calcium (total metals, R y	w-Flow method; mir purge rate is 0.1 - 0. , chloride, fluoric adium 226, and	nimum parameter s .5 L/min (0.03 - 0.1: de, pH, sulfate, Radíum 228).	subset: pH, sp. cond. 3 gal/min) and TDS)	, and turbidity or D	. 5	Sample Time:			
QC SAMPLE QC Sample I		eld Duplicate	☐ MS/N		EQ Rinsate B	lank		JRGED (ml): Sample Time:			

Groundwater Purging and Sampling Form

SITE:	TCM	~	Proj	ect Number:	CCR			Well ID:	LPLFB
Field Team:	-	5m					_		10/14/20
	mp: Ch		100				Arrival		1030
Purge Metho		der 🖾 F			Other:			W (ft btc):	14.20
Pump Settin	g ⁵ : /o	onfimi		Notes:					
		11		Field	d Parameters				
Time ¹	DTW ²	Purge Vol. (ml)	pН	Sp. Cond. (uS/cm)	DO (mg/L)	Temp (°C)	ORP (mV)	Turbidity (NTU)	Note color, odor, etc.
1034	Begin Pumpir	ng							
1039	14.77	500	5.83	4161	1.67	14.0	-7.1		Clear
1044	15.3	1000	5.75	4152	1.28	13.5	-13.9		Clear
		<u>}</u>							
			_						
		1							
1									8-1
Stabilization Criteria ³	· · · ·		± 0.1 units	± 3%	± 0.3 mg/L	•	± 10 mV	± 10% ⁴	
¹ Collect field para		sive readings for Lo	s for Low-Flow methow w-Flow method; min purge rate is 0.1 - 0	nimum parameter s	subset: pH, sp. cond.		exceed 0.33 ft for Lov	v-Flow method	
Sample ID:							_	Sample Time:	1044
	Appendix III				and TDS)				
	Other, speci								
QC SAMPLE	: 🗆 Fi	ield Duplicate	MS/I	MSD 🗌	EQ Rinsate B	lank	TOTAL P	URGED (ml):	
QC Sample	ID :	PLF 8 N	15 / 1	PLFBA	15D		QC	Sample Time	<u> </u>
Comments:		10:53		1100					

Groundwater Purging and Sampling Form

SITE:	Tem		Proj	ect Number:	LLR	<u></u>		Well ID:	LPLF -ZR
Field Team:	5	m						Date:	11/11/2020
Weather/Te	mp: _ Ca	old, P	Sunny	-			Arrival T	ime to Well:	1005
Purge Meth		der 🛛 🖾 🖡			Other:				Le.12
Pump Settir	ng ⁵ : /	00m1/	min	Notes:					
				Field	d Parameters	;			
Time ¹	DTW ²	Purge Vol. (ml)	рН	Sp. Cond. (uS/cm)	DO (mg/L)	Temp (°C)	ORP (mV)	Turbidity (NTU)	Note color, odor, etc.
1009	Begin Pumpin	ng							
1014	Le.22	400	6.22	3760	2.19	11.6	64.7	21.3	clear
1019	6.27	800	6,15	3820	1.54	11.4	33.4	1.4	clear Clear Clear
1024	4.3	1300		3330	1.17	11.4	16.9	2.9	Clear
	6.29								
			÷						
				1					
	-								
Stabilization Criteria ³		1	± 0.1 units	± 3%	± 0.3 mg/L	- •	± 10 mV	± 10% ⁴	•
and the second sec	ameters in consistent ieved after 3 success						ceed 0.33 ft for Low	-Flow method	
⁴ For turbidity read		the second se	ourge rate is 0.1 - 0.				0		
Sample ID:	LPLI	= - 2R					S	ample Time:	10:24
Analysis:	Appendix III	(boron, calcium,	chloride, fluorid	le, pH, sulfate, a	and TDS)				
	Appendix IV			Radium 228).					
	Other, specif				EO Directo D	lonk	TOTAL D		
QC SAMPLE		eld Duplicate	☐ MS/N	ASD 🗌	EQ Rinsate B	Iank		JRGED (ml):	
QC Sample							-	Sample Time:	
Comments:	1 - P								
	-								

Groundwater Purging and Sampling Form

SITE:	TCM		Pro	ject Number:	Cor	2		Well ID:	LPLFE	
Field Team:		Sm							11/11/2020	
Weather/Te	mp:P		cold	40°			Arrival		1039	
Purge Meth		der 🔼		□Grab	Other:	Initial DTW (ft btc): 13.97				
Pump Settin	ng ⁵ :	100 m1/r	nin	Notes:						
				Fiel	d Parameter	5				
Time ¹	DTW ²	Purge Vol. (ml)	pН	Sp. Cond. (uS/cm)	DO (mg/L)	Temp (°C)	ORP (mV)	Turbidity (NTU)	Note color, odor, etc.	
1042	Begin Pumpir	g								
1047	14.34	400	5.82	3529	3.23	11.3	29.0	2.7	Clear	
1052	14.70	900	5,74	3670	1.76	12.2	15.5	-0.7	Clear Clear Clear	
1057	15.0	1300	5.72	3634	1.48	12.5	13.4	-0,7	Clear	
	14.91									
					1					
Stabilization Criteria ³		÷	± 0.1 units	± 3%	± 0.3 mg/L		± 10 mV	± 10% ⁴		
	meters in consistent eved after 3 success			iod imum parameter a	² DTW: Total drawd	lown should not ex	ceed 0.33 ft for Low	-Flow method		
⁴ For turbidity read		⁵ Low-flow target p				and turbidity of D	0			
Sample ID:					1		S	ample Time:	1057	
	Appendix III (and TDS)					
	Appendix IV (-		Radium 228).						
QC SAMPLE	: 🗌 Fie	ld Duplicate	□ MS/M	ISD	EQ Rinsate B	ank	TOTAL PU	IRGED (ml):	· · · · · · · · · · · · · · · · · · ·	
QC Sample II	D:	_					QC S	- Sample Time:		
Comments:										

Appendix B Laboratory Reports

Dennis Morr Transalta Centralia Mining, LLC 913 Big Hanaford Rd Centralia, WA 98531

Laboratory Results for: Transalta Centralia CCR

Dear Dennis,

Enclosed are the results of the sample(s) submitted to our laboratory June 02, 2020 For your reference, these analyses have been assigned our service request number **K2004507**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3350. You may also contact me via email at Kelley.Lovejoy@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

noe D. Dan

for Kelley Lovejoy Project Manager

 ADDRESS
 1317 S. 13th Avenue, Kelso, WA 98626

 PHONE
 +1 360 577 7222
 FAX
 +1 360 636 1068

 ALS Group USA, Corp.
 dba ALS Environmental

Narrative Documents

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 2 of 51

Sample Matrix: Ground Water

Client: Transalta Centralia Mining, LLC

Project: Transalta Centralia CCR

Service Request: K2004507 Date Received: 06/02/2020

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier II level requested by the client.

Sample Receipt:

Six ground water samples were received for analysis at ALS Environmental on 06/02/2020. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

Metals:

No significant anomalies were noted with this analysis.

General Chemistry:

No significant anomalies were noted with this analysis.

Approved by

noe D. Dan

Date ____

06/23/2020

Page 3 of 51

SAMPLE DETECTION SUMMARY

CLIENT ID: 060220-CCR-LPLF1		Lab	DID: K2004	4507-001		
Analyte	Results	Flag	MDL	MRL	Units	Method
Solids, Total Dissolved	2770			5.0	mg/L	SM 2540 C
Chloride	2.29			0.50	mg/L	9056A
Sulfate	1490			50	mg/L	9056A
Boron	0.64			0.11	mg/L	6010C
Calcium	222			0.11	mg/L	6010C
CLIENT ID: 060220-CCR-LPLF5		Lab	DID: K2004	4507-002		
Analyte	Results	Flag	MDL	MRL	Units	Method
Solids, Total Dissolved	1470			5.0	mg/L	SM 2540 C
Chloride	2.37			0.50	mg/L	9056A
Sulfate	688			50	mg/L	9056A
Boron	0.106			0.042	mg/L	6010C
Calcium	303			0.042	mg/L	6010C
LIENT ID: 060220-CCR-LPLF2R		Lab	DID: K2004	4507-003		
Analyte	Results	Flag	MDL	MRL	Units	Method
Solids, Total Dissolved	3550			5.0	mg/L	SM 2540 C
Chloride	7.18			0.50	mg/L	9056A
Sulfate	1740			50	mg/L	9056A
Boron	0.40			0.11	mg/L	6010C
Calcium	478			0.11	mg/L	6010C
CLIENT ID: 060220-CCR-LPLF7R		Lab	DID: K2004	4507-004		
Analyte	Results	Flag	MDL	MRL	Units	Method
Solids, Total Dissolved	2300			5.0	mg/L	SM 2540 C
Chloride	8.36			0.50	mg/L	9056A
Sulfate	1160			50	mg/L	9056A
Boron	0.41			0.11	mg/L	6010C
Calcium	207			0.11	mg/L	6010C
CLIENT ID: 060220-CCR-LPLF7R-FD		Lab	DID: K2004	4507-005		
Analyte	Results	Flag	MDL	MRL	Units	Method
Solids, Total Dissolved	2190			5.0	mg/L	SM 2540 C
Chloride	7.85			0.50	mg/L	9056A
Sulfate	1160			50	mg/L	9056A
Boron	0.41			0.11	mg/L	6010C
Calcium	205			0.11	mg/L	6010C
CLIENT ID: 060220-CCR-LPLF8		Lab	DID: K2004	4507-006		
Analyte	Results	Flag	MDL	MRL	Units	Method
Solids, Total Dissolved	3530			5.0	mg/L	SM 2540 C
Chloride	6.37			0.50	mg/L	9056A
Sulfate	2220			50	mg/L	9056A
Boron	1.10			0.11	mg/L	6010C
	Page	4 of 51				
		-				

SAMPLE DETECTION SUMMARY

CLIENT ID: 060220-CCR-LPLF8		Lab	ID: K2004	507-006		
Analyte	Results	Flag	MDL	MRL	Units	Method
Calcium	393			0.11	mg/L	6010C

Sample Receipt Information

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 6 of 51

SAMPLE CROSS-REFERENCE

<u>SAMPLE #</u>	CLIENT SAMPLE ID	DATE	TIME
K2004507-001	060220-CCR-LPLF1	6/2/2020	0850
K2004507-002	060220-CCR-LPLF5	6/2/2020	0935
K2004507-003	060220-CCR-LPLF2R	6/2/2020	1030
K2004507-004	060220-CCR-LPLF7R	6/2/2020	1130
K2004507-005	060220-CCR-LPLF7R-FD	6/2/2020	1135
K2004507-006	060220-CCR-LPLF8	6/2/2020	1225

						•			Ś	ы с 99	96	2	C		003		SR# <u>K2@01</u> coc setof COC#	1507
(ALS) Enuin	onmen	cal	13	17 Sout	1 13th .	Ave, K	(elso, \	WA 9	8626		e (360) alsglob			800-69	95-7222 / FAX (360)	636-1068	P	age 1 of 1
Project Name Transkita Centralia CCR	Project Number:				2		28D		180D	ľ								
Project Manager Dennis Mo	~~						N T		μ.		 _		T	_				
Irans Alta C	ta Centralia Mining LLC			CONTAINERS														
Address [13 Big Hangt	aFord Rd. Centralia WA 98531			NTAI														
Phone # 360-330-8209	8209 dennis-mar Q trans a Ita. ca] <u></u> 2	rds	epi			ls T									
Sampler Signature	Sampler Printed			EROF	./00	Chior	LL.	S04	Meta									
Wig Bah		idon (Jacob	:>	NUMBER	SM 2540 C / TDS	9056A / Chioride	9056A / F	9056A / SO4	5010C / Metals T	-	N	33	4	5	Remarks			
CLIENT SAMPLE ID		SAMPLING Pate Time	Matrix															
1. OLORIZO-CCR-LRLFI		120 0850	W	2	X	$\overline{\times}$	×	$\overline{\mathbf{v}}$	$\overline{\times}$									
2. Obc220-CLR-LPLFS		120 0 9 35	W	2	$\widehat{\mathbf{x}}$	x	x	×.	×									
3.060220-CCR-LPLF2R	(e)2		W	2	$\frac{1}{\chi}$	Ĵ	$\widehat{}$	$\frac{2}{3}$	$\hat{}$									
4. av220-icp-ip1F2R-MS	62		vu vv	2	$\overline{\mathbf{v}}$	$\overline{\mathbf{v}}$	$\frac{1}{\lambda}$	×	X									
5.0022 -CLR-LPLF2R-MSD	6/2		1.1	2	X	$\hat{\boldsymbol{\lambda}}$	ý ¥	<u> </u>	×				\neg					
6. NO0220-CCP - IPLF 7P.	612		W	2	X	x	Ź	×	×									
7.060220-CCR-LPLF7R-FD	10/2		W	2	X	×	X	ý	X				-					
8.060220-CCR-LPLF8	6/2	2	W	2	X	X	X	X	×			†		-				
9.		<u> </u>											\neg					
10.		**********										1						
Report Requirements I. Routine Report: Method Blank, Surrogate, as required	Invoice P.O.#_47 Bill To:	Information 20083941 L 30													Cd Co Cr Cu	t <u>alsaretobeanalyzed</u> Fe Pb Mg Mn Mo Ni K Ag u Fe Pb Mg Mn Mo Ni K J		÷
II. Report Dup., MS, MSD as required				pecia				·								irocarbon Procedure: AK CA	_	Circle One)
III. CLP Like Summary (no raw data)	Turnaround 24 hr. 5 Day	I Requireme	nts	peela														
IV. Data Validation Report	Standard																	
V. EDD	Renues	led Report Date																
Relinquished By:		ived By:		Re	linqı	uish	ed E	3y:			Λ	h	ece	ivec	d By:	Relinquished By:	Received	By:
Signature	Matta Dem men 1		ature	'n	<u> </u>	Me	2~	<u>`````````````````````````````````````</u>		ignat) V	1	•	or	Signature	Signature		
Nicole Badon	Printed Name Printed Name Printed Name Printed Name Dennis Morr D			ed Na	ime ハハ	is	W	6,	1	P	rinteo		n e //8	WC	sW	Printed Name	Printed Name	
Firm Jacobs	irm Firm Firm			 	-Cv	n					im _Λ	75		- C		Firm	Firm	
Date/Time (220, 12:50 Date/Time (210 12:50			Date	/Time	6/3	2 Z	0			D	ate/T	Time	······	~ { 		Date/Time	Date/Time	

n rejunation			Coo	ler Rece	ipt and Pre	servation	ı Form			
Client	ransAl	1/9			S	ervice Rec	juest K20	4507		<u> </u>
Received:	6/2/2	<u>LO</u> Open	ed: <u>[]</u>	420	By:			12/20	By:	h_
1. Samples v	were received	l via? USI	PS Fed	Ex U	PS DHL	PDX	Courier <	Hand Delivered		
2. Samples v	were received	in: (circle)	Cooler		· ``		her		N⁄	4
3. Were <u>cust</u>	tody seals on	coolers?	NA	Y (r	I If ye	s, how man	y and where?	<u> </u>		N-1
If present.	, were custod	ly seals intact	?	YN	l If	present, w	ere they signed	and dated?	}	Y N
Temp Blank	Sample,1	Sample 2	Sample 3	Sample 4	IR GUN	Cooler / C	OCID NA	Tracking N	lumber N/	Filed
	10.4	14-($\frac{1}{l\lambda \cdot l}$	16-3	TRO2	- 996	21)		\sim	
						<u> </u>				
	<u> </u>					et Ice Dr	y Ice Sleeve			<u> </u>
•		serts Baggi		e Wrap C			y Ice Sleeve		NA C	v N
		properly filled				l'a in die	4-11-1-I			Y N
6. Were sam	ples receive	d in good con If applicabl			broken)? Ind		e table below. Partially Thaw	ved Thawed	NA C	J IN
7. Were all s	ample labels	1 1		*					NA 🕓	Y N
						r discrepan	cies in the tab	le on page 2.	NA C	y n
	m				for the tests ir				NA (Y) N
× +	-						Indicate in th	e table below	NA C	Y N
					n the table belo				NA .	Y N
12. Was C12			-						NA '	Y N
Sa	mple ID on B	ottle		Sample	ID on COC	<i>«</i>	-	Identified by:		
							I			

PCKL

Sample ID on Bottle	Sample ID on COC	identified by:

Sample ID	Bottle Count Bottle Type	Out of Temp	Head- space	Broke	рH	Reagent	Volume added	Reagent Lot Number	initials	Time
							<u> </u>			
						······································				
			L				┇			
 ······							<u></u>			
 		ļ	ļ	ļ					_	
		<u> </u>		<u> </u>	<u> </u>				<u> </u>	

Notes, Discrepancies, & Resolutions:

Miscellaneous Forms

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 10 of 51

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- $i \,$ $\,$ The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- ${f F}$ The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Page 11 of 51

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEH	http://dec.alaska.gov/eh/lab/cs/csapproval.htm	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L16-58-R4
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	http://health.hawaii.gov/	-
ISO 17025	http://www.pjlabs.com/	L16-57
Louisiana DEQ	http://www.deq.louisiana.gov/page/la-lab-accreditation	03016
Maine DHS	http://www.maine.gov/dhhs/	WA01276
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/enforcement/oqa.html	WA005
New York - DOH	https://www.wadsworth.org/regulatory/elap	12060
North Carolina DEQ	https://deq.nc.gov/about/divisions/water-resources/water-resources- data/water-sciences-home-page/laboratory-certification-branch/non-field-lab- certification	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaborator yAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/EnvironmentalLabCertification/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wyoming (EPA Region 8)	https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water-	-
Kelso Laboratory Website	www.alsglobal.com to our laboratory's NELAP-approved quality assurance program. A complete	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LOD	Limit of Detection
LOQ	Limit of Quantitation
LUFT	Leaking Underground Fuel Tank
M MCL	Modified Maximum Contaminant Level is the highest permissible concentration of a substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH tr	Total Petroleum Hydrocarbons Trace level is the concentration of an analyte that is less than the PQL but greater than or equal to the MDL.

Analyst Summary report

Client:Transalta Centralia Mining, LLCProject:Transalta Centralia CCR/

060220-CCR-LPLF1

K2004507-001

Ground Water

Sample Name:

Sample Matrix:

Lab Code:

Service Request: K2004507

Date Collected: 06/2/20 **Date Received:** 06/2/20

Analysis Method 6010C 9056A SM 2540 C		Extracted/Digested By JHINSON	Analyzed By RMOORE MRODRIGUEZ JMADISON
Sample Name: Lab Code: Sample Matrix:	060220-CCR-LPLF5 K2004507-002 Ground Water		Date Collected: 06/2/20 Date Received: 06/2/20
Analysis Method 6010C 9056A SM 2540 C		Extracted/Digested By JHINSON	Analyzed By RMOORE MRODRIGUEZ JMADISON
Sample Name: Lab Code: Sample Matrix:	060220-CCR-LPLF2R K2004507-003 Ground Water		Date Collected: 06/2/20 Date Received: 06/2/20
Analysis Method 6010C 9056A SM 2540 C		Extracted/Digested By JHINSON	Analyzed By RMOORE MRODRIGUEZ JMADISON
Sample Name: Lab Code: Sample Matrix:	060220-CCR-LPLF7R K2004507-004 Ground Water		Date Collected: 06/2/20 Date Received: 06/2/20
Analysis Method		Extracted/Digested By	Analyzed By

6010C

9056A

SM 2540 C

Superset Reference:20-0000551926 rev 00

JMADISON

RMOORE

MRODRIGUEZ

JHINSON

Analyst Summary report

Client:	Transalta Centralia Mining, LLC
Project:	Transalta Centralia CCR/

K2004507-005

Ground Water

060220-CCR-LPLF7R-FD

Sample Name:

Sample Matrix:

Lab Code:

SM 2540 C

Service Request: K2004507

Date Collected: 06/2/20 **Date Received:** 06/2/20

Analysis Method 6010C 9056A SM 2540 C		Extracted/Digested By JHINSON	Analyzed By RMOORE MRODRIGUEZ JMADISON
Sample Name: Lab Code: Sample Matrix:	060220-CCR-LPLF8 K2004507-006 Ground Water		ate Collected: 06/2/20 ate Received: 06/2/20
Analysis Method 6010C 9056A		Extracted/Digested By JHINSON	Analyzed By RMOORE MRODRIGUEZ

JMADISON

Sample Results

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 16 of 51

Metals

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 17 of 51

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request: K2004507
Project:	Transalta Centralia CCR	Date Collected: 06/02/20 08:50
Sample Matrix:	Ground Water	Date Received: 06/02/20 14:45
Sample Name: Lab Code:	060220-CCR-LPLF1 K2004507-001	Basis: NA

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Boron	6010C	0.64	mg/L	0.11	5	06/22/20 15:01	06/10/20	
Calcium	6010C	222	mg/L	0.11	5	06/22/20 15:01	06/10/20	

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request: K2004507
Project:	Transalta Centralia CCR	Date Collected: 06/02/20 09:35
Sample Matrix:	Ground Water	Date Received: 06/02/20 14:45
Sample Name: Lab Code:	060220-CCR-LPLF5 K2004507-002	Basis: NA

Analvte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analvzed	Date Extracted	0
					DII.			<u>V</u>
Boron	6010C	0.106	mg/L	0.042	2	06/22/20 15:05	06/10/20	
Calcium	6010C	303	mg/L	0.042	2	06/22/20 15:05	06/10/20	

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request:	K2004507
Project:	Transalta Centralia CCR	Date Collected:	06/02/20 10:30
Sample Matrix:	Ground Water	Date Received:	06/02/20 14:45
Sample Name: Lab Code:	060220-CCR-LPLF2R K2004507-003	Basis:	NA

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Boron	6010C	0.40	mg/L	0.11	5	06/22/20 15:09	06/10/20	
Calcium	6010C	478	mg/L	0.11	5	06/22/20 15:09	06/10/20	

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request: K2004507
Project:	Transalta Centralia CCR	Date Collected: 06/02/20 11:30
Sample Matrix:	Ground Water	Date Received: 06/02/20 14:45
Sample Name: Lab Code:	060220-CCR-LPLF7R K2004507-004	Basis: NA

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Boron	6010C	0.41	mg/L	0.11	5	06/22/20 15:28	06/10/20	
Calcium	6010C	207	mg/L	0.11	5	06/22/20 15:28	06/10/20	

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request: K2004507
Project:	Transalta Centralia CCR	Date Collected: 06/02/20 11:35
Sample Matrix:	Ground Water	Date Received: 06/02/20 14:45
Sample Name: Lab Code:	060220-CCR-LPLF7R-FD K2004507-005	Basis: NA

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Boron	6010C	0.41	mg/L	0.11	5	06/22/20 15:42	06/10/20	
Calcium	6010C	205	mg/L	0.11	5	06/22/20 15:42	06/10/20	

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request: K2004507	
Project:	Transalta Centralia CCR	Date Collected: 06/02/20 12:2	25
Sample Matrix:	Ground Water	Date Received: 06/02/20 14:4	5
Sample Name: Lab Code:	060220-CCR-LPLF8 K2004507-006	Basis: NA	

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Boron	6010C	1.10	mg/L	0.11	5	06/22/20 15:46	06/10/20	
Calcium	6010C	393	mg/L	0.11	5	06/22/20 15:46	06/10/20	

General Chemistry

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 24 of 51

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request: K2004507
Project:	Transalta Centralia CCR	Date Collected: 06/02/20 08:50
Sample Matrix:	Ground Water	Date Received: 06/02/20 14:45
Sample Name: Lab Code:	060220-CCR-LPLF1 K2004507-001	Basis: NA

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Chloride	9056A	2.29	mg/L	0.50	5	06/03/20 12:55	
Fluoride	9056A	ND U	mg/L	1.0	5	06/03/20 12:55	
Sulfate	9056A	1490	mg/L	50	500	06/03/20 14:32	

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request: K2004507
Project:	Transalta Centralia CCR	Date Collected: 06/02/20 08:50
Sample Matrix:	Ground Water	Date Received: 06/02/20 14:45
Sample Name: Lab Code:	060220-CCR-LPLF1 K2004507-001	Basis: NA

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Dissolved	SM 2540 C	2770	mg/L	5.0	1	06/05/20 13:35	

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request:	K2004507
Project:	Transalta Centralia CCR	Date Collected:	06/02/20 09:35
Sample Matrix:	Ground Water	Date Received:	06/02/20 14:45
Sample Name: Lab Code:	060220-CCR-LPLF5 K2004507-002	Basis:	NA

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Chloride	9056A	2.37	mg/L	0.50	5	06/03/20 13:04	
Fluoride	9056A	ND U	mg/L	1.0	5	06/03/20 13:04	
Sulfate	9056A	688	mg/L	50	500	06/03/20 14:42	

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request: K2004507
Project:	Transalta Centralia CCR	Date Collected: 06/02/20 09:35
Sample Matrix:	Ground Water	Date Received: 06/02/20 14:45
Sample Name: Lab Code:	060220-CCR-LPLF5 K2004507-002	Basis: NA

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Dissolved	SM 2540 C	1470	mg/L	5.0	1	06/05/20 13:35	

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request: K2004507
Project:	Transalta Centralia CCR	Date Collected: 06/02/20 10:30
Sample Matrix:	Ground Water	Date Received: 06/02/20 14:45
Sample Name: Lab Code:	060220-CCR-LPLF2R K2004507-003	Basis: NA

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Chloride	9056A	7.18	mg/L	0.50	5	06/03/20 13:14	
Fluoride	9056A	ND U	mg/L	1.0	5	06/03/20 13:14	
Sulfate	9056A	1740	mg/L	50	500	06/03/20 14:51	

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request: K2004507
Project:	Transalta Centralia CCR	Date Collected: 06/02/20 10:30
Sample Matrix:	Ground Water	Date Received: 06/02/20 14:45
Sample Name: Lab Code:	060220-CCR-LPLF2R K2004507-003	Basis: NA

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Dissolved	SM 2540 C	3550	mg/L	5.0	1	06/05/20 13:35	

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request:	K2004507
Project:	Transalta Centralia CCR	Date Collected:	06/02/20 11:30
Sample Matrix:	Ground Water	Date Received:	06/02/20 14:45
Sample Name: Lab Code:	060220-CCR-LPLF7R K2004507-004	Basis:	NA

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Chloride	9056A	8.36	mg/L	0.50	5	06/03/20 13:24	
Fluoride	9056A	ND U	mg/L	1.0	5	06/03/20 13:24	
Sulfate	9056A	1160	mg/L	50	500	06/03/20 15:01	

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request: K2004507
Project:	Transalta Centralia CCR	Date Collected: 06/02/20 11:30
Sample Matrix:	Ground Water	Date Received: 06/02/20 14:45
Sample Name: Lab Code:	060220-CCR-LPLF7R K2004507-004	Basis: NA

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Dissolved	SM 2540 C	2300	mg/L	5.0	1	06/05/20 13:35	

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request: K2004507
Project:	Transalta Centralia CCR	Date Collected: 06/02/20 11:35
Sample Matrix:	Ground Water	Date Received: 06/02/20 14:45
Sample Name: Lab Code:	060220-CCR-LPLF7R-FD K2004507-005	Basis: NA

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Chloride	9056A	7.85	mg/L	0.50	5	06/03/20 13:33	
Fluoride	9056A	ND U	mg/L	1.0	5	06/03/20 13:33	
Sulfate	9056A	1160	mg/L	50	500	06/03/20 15:10	

Analytical Report

Client:Transalta Centralia Mining, LLCService Request:K2004507Project:Transalta Centralia CCRDate Collected:06/02/20 11:35Sample Matrix:Ground WaterDate Received:06/02/20 14:45Sample Name:060220-CCR-LPLF7R-FDBasis:NALab Code:K2004507-005K2004507-005

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Dissolved	SM 2540 C	2190	mg/L	5.0	1	06/05/20 13:35	

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request: K2004507
Project:	Transalta Centralia CCR	Date Collected: 06/02/20 12:25
Sample Matrix:	Ground Water	Date Received: 06/02/20 14:45
Sample Name: Lab Code:	060220-CCR-LPLF8 K2004507-006	Basis: NA

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Chloride	9056A	6.37	mg/L	0.50	5	06/03/20 14:12	
Fluoride	9056A	ND U	mg/L	1.0	5	06/03/20 14:12	
Sulfate	9056A	2220	mg/L	50	500	06/03/20 15:20	

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request: K2004507
Project:	Transalta Centralia CCR	Date Collected: 06/02/20 12:25
Sample Matrix:	Ground Water	Date Received: 06/02/20 14:45
Sample Name: Lab Code:	060220-CCR-LPLF8 K2004507-006	Basis: NA

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Dissolved	SM 2540 C	3530	mg/L	5.0	1	06/05/20 13:35	

QC Summary Forms

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 37 of 51

Metals

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 38 of 51

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request: K2004507
Project:	Transalta Centralia CCR	Date Collected: NA
Sample Matrix:	Ground Water	Date Received: NA
Sample Name: Lab Code:	Method Blank KQ2007884-02	Basis: NA

Total Metals

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Boron	6010C	ND U	mg/L	0.021	1	06/22/20 14:55	06/10/20	
Calcium	6010C	ND U	mg/L	0.021	1	06/22/20 14:55	06/10/20	

QA/QC Report

Client:	Transalta Centralia Mining, Ll	LC	Servic	e Request:	K2004507
Project:	Transalta Centralia CCR		Date (Collected:	06/02/20
Sample Matrix:	Ground Water		Date F	Received:	06/02/20
			Date A	analyzed:	06/22/20
			Date H	Extracted:	06/10/20
		Matrix Spike Su	mmary		
		Total Meta	ls		
Sample Name:	060220-CCR-LPLF2R			Units:	mg/L
Lab Code:	K2004507-003			Basis:	NA
Analysis Method:	6010C				
Prep Method:	EPA CLP ILM04.0				
		Matrix Spike KQ2007884-04			
Analvte Name	Sample Result	Result	Spike Amount	% Rec	% Rec Limits

Analyte Name	Sample Result	Result	Spike Amount	% Rec	% Rec Limits
Boron	0.40	0.95	0.50	109	75-125
Calcium	478	488	10.0	93 #	75-125

Results flagged with an asterisk (\ast) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

QA/QC Report

Client:	Transalta Centralia Mining, LLC	Service Request:	K2004507
Project	Transalta Centralia CCR	Date Collected:	06/02/20
Sample Matrix:	Ground Water	Date Received:	06/02/20
		Date Analyzed:	06/22/20
	Replicate Sample Summary		
	Total Metals		
Sample Name:	060220-CCR-LPLF2R	Units:	mg/L
Lab Code:	K2004507-003	Basis:	NA

Lab Coue.	K2004307-003					Dasis. INA	
Analyte Name	Analysis Method	MRL	Sample Result	Duplicate Sample KQ2007884-03 Result	Average	RPD	RPD Limit
Boron	6010C	0.11	0.40	0.40	0.40	<1	20
Calcium	6010C	0.11	478	474	476	<1	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client:Transalta Centralia Mining, LLCProject:Transalta Centralia CCRSample Matrix:Ground Water

Service Request: K2004507 **Date Analyzed:** 06/22/20

Lab Control Sample Summary Total Metals

Units:mg/L Basis:NA

Lab Control Sample

KQ2007884-01

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Boron	6010C	0.510	0.500	102	80-120
Calcium	6010C	11.8	12.5	95	80-120

General Chemistry

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 43 of 51

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request:	K2004507
Project:	Transalta Centralia CCR	Date Collected:	NA
Sample Matrix:	Ground Water	Date Received:	NA
Sample Name: Lab Code:	Method Blank K2004507-MB1	Basis:	NA

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Chloride	9056A	ND U	mg/L	0.10	1	06/03/20 10:20	
Fluoride	9056A	ND U	mg/L	0.20	1	06/03/20 10:20	
Sulfate	9056A	ND U	mg/L	0.10	1	06/03/20 10:20	

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request:	K2004507
Project:	Transalta Centralia CCR	Date Collected:	NA
Sample Matrix:	Ground Water	Date Received:	NA
Sample Name: Lab Code:	Method Blank K2004507-MB1	Basis:	NA

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Dissolved	SM 2540 C	ND U	mg/L	5.0	1	06/05/20 13:35	

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request:	K2004507
Project:	Transalta Centralia CCR	Date Collected:	NA
Sample Matrix:	Ground Water	Date Received:	NA
Sample Name: Lab Code:	Method Blank K2004507-MB2	Basis:	NA

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Chloride	9056A	ND U	mg/L	0.10	1	06/03/20 18:06	
Fluoride	9056A	ND U	mg/L	0.20	1	06/03/20 18:06	
Sulfate	9056A	ND U	mg/L	0.10	1	06/03/20 18:06	

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request: K2004507
Project:	Transalta Centralia CCR	Date Collected: NA
Sample Matrix:	Ground Water	Date Received: NA
Sample Name: Lab Code:	Method Blank K2004507-MB2	Basis: NA

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Dissolved	SM 2540 C	ND U	mg/L	5.0	1	06/05/20 13:35	

QA/QC Report

Client:	Transalta Centralia Mining, LLC
Project:	Transalta Centralia CCR
Sample Matrix:	Ground Water

1740

3610

Duplicate Matrix Spike Summary General Chemistry Parameters

93

3660

2000

96

90-110

1

Sample Name: Lab Code:	: 060220-CCR-LPLF2R K2004507-003									
					rix Spike 507-003M	IS	Duplicate K200450			
Analyte Name	Method	Sample Result	Result	Spike Amount	% Rec	Result	Spike Amount	% Rec	% Rec Limits	RPD
Fluoride	9056A	ND U	19.8	20.0	99	19.9	20.0	99	80-120	<1 <1
Chloride	9056A	7.18	26.0	20.0	94	26.1	20.0	95	80-120	<1

2000

Results flagged with an asterisk (*) indicate values outside control criteria.

9056A

Sulfate

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Service Request:K2004507 Date Collected:06/02/20 Date Received:06/02/20 Date Analyzed:6/3/20

> **RPD** Limit 20 20

> > 20

QA/QC Report

Client: Project Sample Matrix:	Transalta Centralia Minin Transalta Centralia CCR Ground Water	g, LLC			Service Requ Date Collec Date Recei	ted: 06/02	/20							
_					Date Analy	zed: 06/03	/20 - 06/05/20							
Replicate Sample Summary														
	General Chemistry Parameters													
Sample Name:	060220-CCR-LPLF2R				U	nits: mg/L								
Lab Code:	K2004507-003				Basis: NA									
			<i>.</i> .	Duplicate Sample K2004507-										
Analyte Name	Analysis Method	MRL	Sample Result	003DUP Result	Average	RPD	RPD Limit							
Chloride	9056A	0.50	7.18	7.12	7.15	<1	20							
Fluoride	9056A	1.0	ND U	ND U	NC	NC	20							
Solids, Total Dissolved	SM 2540 C	5.0	3550	3620	3590	2	5							
Sulfate	9056A	50	1740	1730	1740	<1	20							

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client:	Transalta Centralia Mining, LLC
Project:	Transalta Centralia CCR
Sample Matrix:	Ground Water

Lab Control Sample Summary General Chemistry Parameters

Service Request: K2004507 Date Analyzed: 06/03/20 - 06/05/20

> Units:mg/L Basis:NA

Lab Control Sample

K2004507-LCS1

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Chloride	9056A	4.71	5.00	94	80-120
Fluoride	9056A	4.91	5.00	98	90-110
Solids, Total Dissolved	SM 2540 C	908	922	98	85-115
Sulfate	9056A	4.85	5.00	97	90-110

QA/QC Report

Client:	Transalta Centralia Mining, LLC
Project:	Transalta Centralia CCR
Sample Matrix:	Ground Water

Service Request: K2004507 **Date Analyzed:** 06/03/20

Lab Control Sample Summary General Chemistry Parameters

Units:mg/L Basis:NA

Lab Control Sample K2004507-LCS2

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Chloride	9056A	4.79	5.00	96	80-120
Fluoride	9056A	4.99	5.00	100	90-110
Sulfate	9056A	4.87	5.00	97	90-110

Dennis Morr Transalta Centralia Mining, LLC 913 Big Hanaford Rd Centralia, WA 98531

Laboratory Results for: LPLF CCR

Dear Dennis,

Enclosed are the results of the sample(s) submitted to our laboratory July 13, 2020 For your reference, these analyses have been assigned our service request number **K2005859**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3350. You may also contact me via email at Kelley.Lovejoy@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Kelley Loveyoy

Kelley Lovejoy Project Manager

> ADDRESS 1317 S. 13th Avenue, Kelso, WA 98626 PHONE +1 360 577 7222 | FAX +1 360 636 1068 ALS Group USA, Corp. dba ALS Environmental

Narrative Documents

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Date Received: 07/13/2020

Service Request: K2005859

Project:LPLF CCRSample Matrix:Ground Water

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier II level requested by the client.

Sample Receipt:

Two ground water samples were received for analysis at ALS Environmental on 07/13/2020. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

Metals:

Client:

No significant anomalies were noted with this analysis.

Transalta Centralia Mining, LLC

General Chemistry:

No significant anomalies were noted with this analysis.

Approved by Kelley Avero

Date 08/03/2020

SAMPLE DETECTION SUMMARY

CLIENT ID: LPFL-2R		Lab	ID: K200	5859-001		
Analyte	Results	Flag	MDL	MRL	Units	Method
Solids, Total Dissolved	3750			5.0	mg/L	SM 2540 C
Boron	0.351			0.021	mg/L	6010C
CLIENT ID: LPLF-8		Lab	D: K200	5859-002		
Analyte	Results	Flag	MDL	MRL	Units	Method
Boron	1.02			0.021	mg/L	6010C

Sample Receipt Information

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER Page 5 of 27

SAMPLE CROSS-REFERENCE

SAMPLE #	CLIENT SAMPLE ID	DATE	TIME
K2005859-001	LPFL-2R	7/13/2020	0910

ADDRESS 1317 South 13th Ave., Kelso, WA 98626 PHONE 1 360 577 7222 FAX 1 360 636 1068

Work Order No.:

Chain of Custody

K2005859

Part of the ALS Group A Campbell Brothers Limited Company

Project Manager: Steve Ma	hr			•							Bill	to:	1946 S.	, and the second	Ste	ve M	lahr					
Client Name: TransAlta	Centralia	a Mining Com	pany								Company:			20962-00 1	TransAlta Centralia Mining							
Address: 913 Big H	lanaford F	Road									Add	ress	1 ¹⁹⁶⁶	283998	913 Big Hanaford Road							
City, State ZIP: Centralia,	WA 9853	31]	City	, Sta	te Zl	iP: ਂ	Cer	ntral	ia, WA	9853	31			
Email: steve_ma	hr@trans	alta.com	Phone:	360)-33(0-81	40			Ema	ul: 👘	266,868	839.63	stev	ve m	ahr@t	ransal	ta.com		po#		
Project Name: LPLF CCI	R				2.5	Sejary.	499993 199		1999 (M	an a	ene ang	REC	QUE:	STEI	D AN	VALY	′SIS 🔅	ggaare	Ne de terres	etan seria da seria Esta de seria da seria	sin in fi	TAT
Project Number:																						Routine 21day
P.O. Number: 4700083	942 Line	e 30					1	ŀ														Same Day 100%
Sampler's Name: Steve Ma	hr						1															Next Day ***
SA	MPLE RI	ECEIPT																				3 Day
Temperature (°C):		Temp Bla	nk Present] 🖄															Í		5 Day 50%
Received Intact:	Yes	No N/A	Wet Ice / I	Blue Ice]															ŀ		Surcharges.
Cooler Custody Seals:	Yes	No N/A	Total Cont	ainers:] 3																	Please call for
Sample Custody Seals:	Yes	No N/A			ers		H	228	s		e			F	-	226						availability
Sample Identification	Matrix	Date Sampled	Time Sampled	Lab ID	No. of Containers		SM 4500-H + B /	904.0 / Radium	SM 2540 C / TDS	7470A / Hg T	9056A / Chloride	9056A / F	9056A / SO4	6010C / Metals	6020A / Metals	903.0 Radium 2						Due Date:
LPFL-2R	GW	07/13/2020	9:10		2				X			<u>.</u>		X	-							Boron, TDS
LPLF-8	GW	07/13/2020	9:55	1	1		†							x	· ···							Boron
······································								ļ	<u>†</u>										++			
									İ					1								
									<u> </u>													
															1	 				····		
									<u> </u>					<u> </u>	<u> </u>				+			
														<u> </u>		<u> </u>						
																+			-			
																			-			
															 				+ +			
Lissolved	Δ	.g, Al, As, B, Bi	a Re Ca Cd			- K	Li M	a M	n Mo	. Na		2 Ph	Sh.	<u> </u>		<u>Sr</u> 7						litional Methods
Total		.g, Al, As, B, B						·····		· · · · ·												able Upon Request
		LINQUISH										,				,,			/ED B	Y		
Print Name			gnature 🦯			Dat	te/T	ime				Р	rint	Nam	ie				Services.	ature		Date/Time
Steve Mahr		-AL /	1000	/	07/	13/2	2020) 11	ъĥ.		7	7		na.					T	-		- 1/13/2020 1600

ALS

Cooler Receipt a	ad Preservation	Form
-------------------------	-----------------	------

PC KL

NA

NA

NA

NA

NA

NA

NĂ

NÁ

Ν

N

Ν

Ν

Ν

Ν

Ν

7/00

Y]

Y

Y

	emp Blank	Sample 1	Sample 2	Sample 3	Sample 4	IR GUN	Cooler / C	OC ID AA	Tracking	lumber NA	Filed
	If present,	were custod	ly seals intact	?	Y N	If	present, we	ere they sign	ed and dated?	Y	N
3.	Were <u>cust</u>	ody seals on	coolers?	NA	Y 🔿	⊳ lf yes	, how man	y and where	?		
2.	Samples w	vere received	l in: (circle)	Cooler	> Box	Envelop	e Otl	her		NA	
1.	Samples w	vere received	i via? US	PS Fed	Ex Ul	PS DHL	PDX	Courier ⁽	Hand Delivere	à	
Re	eceived: <u>J</u>	UL 1 3 2020	Open	ed: JUL	1 3 2020	_ Ву:_ <i>С</i>	1	Unloaded:	JUL 1 3 2020	ву: <u><i>С</i></u>	
Cl	lient Tr	ansol	<u>ta</u>			Se	rvice Req	uest K20_ (05859		
		s.				-					

Temp Blank	Sample 1	Sample 2	Sample 3	Sample 4	IR GUN	Cooler / COC ID NA	Tracking Number NA	Filed
4.1	·				FROI			

4. Packing material: Inserts Baggies Bubble Wrap Gel Packs Wet Ice Dry Ice Sleeves

5.	Were	custody	papers	properly	filled	out	(ink,	signed,	etc.)	?
----	------	---------	--------	----------	--------	-----	-------	---------	-------	---

6.	Were samples received in good condition (temperature, unbroken)?	Indicate in t	he table below.	
	If applicable, tissue samples were received:	Frozen	Partially Thawed	Thawed

7. Were all sample labels complete (i.e analysis, preservation, etc.)?

8. Did all sample labels and tags agree with custody papers? Indicate major discrepancies in the table on page 2.

9. Were appropriate bottles/containers and volumes received for the tests indicated?

10. Were the pH-preserved bottles (see SMO GEN SOP) received at the appropriate pH? Indicate in the table below

11. Were VOA vials received without headspace? Indicate in the table below.

12. Was C12/Res negative?

Sample ID on Bottle	Sample ID on COC	identified by:
LPLF-2R	LPFL-2R	Elimination

Sample ID	Bottle Count Bottle Type	Out of Temp	Head- space	Broke	pН	Reagent	Volume added	Reagent Lot Number	Initials	Time
		L								
		L	L							
		1							[
## <u>ga</u>		1	[

Notes, Discrepancies, & Resolutions:

Miscellaneous Forms

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- $i \,$ $\,$ The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- ${f F}$ The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEH	http://dec.alaska.gov/eh/lab/cs/csapproval.htm	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L16-58-R4
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	http://health.hawaii.gov/	-
ISO 17025	http://www.pjlabs.com/	L16-57
Louisiana DEQ	http://www.deq.louisiana.gov/page/la-lab-accreditation	03016
Maine DHS	http://www.maine.gov/dhhs/	WA01276
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/enforcement/oqa.html	WA005
New York - DOH	https://www.wadsworth.org/regulatory/elap	12060
North Carolina DEQ	https://deq.nc.gov/about/divisions/water-resources/water-resources- data/water-sciences-home-page/laboratory-certification-branch/non-field-lab- certification	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaborator yAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/EnvironmentalLabCertification/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wyoming (EPA Region 8)	https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water-	-
Kelso Laboratory Website	www.alsglobal.com to our laboratory's NFLAP-approved quality assurance program A complete	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LOD	Limit of Detection
LOQ	Limit of Quantitation
LUFT	Leaking Underground Fuel Tank
M MCL	Modified Maximum Contaminant Level is the highest permissible concentration of a substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH	Total Petroleum Hydrocarbons
tr	Trace level is the concentration of an analyte that is less than the PQL but greater than or equal to the MDL.

Analyst Summary report

Client: Transalta Centralia Mining, LLC **Project:** LPLF CCR/

LPFL-2R K2005859-001

Ground Water

Service Request: K2005859

Date Collected: 07/13/20 **Date Received:** 07/13/20

Analysis Method 6010C SM 2540 C		Extracted/Digested By JHINSON	Analyzed By AMCKORNEY JMADISON
Sample Name: Lab Code: Sample Matrix:	LPLF-8 K2005859-002 Ground Water		Date Collected: 07/13/20 Date Received: 07/13/20
Analysis Method 6010C		Extracted/Digested By JHINSON	Analyzed By AMCKORNEY

Printed 8/3/2020 5:34:53 PM

Sample Name:

Sample Matrix:

Lab Code:

Page 13 of 27

Sample Results

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER Page 14 of 27

Metals

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER Page 15 of 27

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request:	K2005859
Project:	LPLF CCR	Date Collected:	07/13/20 09:10
Sample Matrix:	Ground Water	Date Received:	07/13/20 16:00
Sample Name: Lab Code:	LPFL-2R K2005859-001	Basis:	NA

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Boron	6010C	0.351	mg/L	0.021	1	08/03/20 11:06	07/21/20	

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request: K2005859
Project:	LPLF CCR	Date Collected: 07/13/20 09:55
Sample Matrix:	Ground Water	Date Received: 07/13/20 16:00
Sample Name:	LPLF-8	Basis: NA
Lab Code:	K2005859-002	

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Boron	6010C	1.02	mg/L	0.021	1	08/03/20 11:10	07/21/20	

General Chemistry

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER Page 18 of 27

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request:	K2005859
Project:	LPLF CCR	Date Collected:	07/13/20 09:10
Sample Matrix:	Ground Water	Date Received:	07/13/20 16:00
Sample Name: Lab Code:	LPFL-2R K2005859-001	Basis:	NA

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Dissolved	SM 2540 C	3750	mg/L	5.0	1	07/14/20 10:30	

QC Summary Forms

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER Page 20 of 27

Metals

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER Page 21 of 27

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request: K2005859
Project:	LPLF CCR	Date Collected: NA
Sample Matrix:	Ground Water	Date Received: NA
Sample Name: Lab Code:	Method Blank KQ2009718-03	Basis: NA

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Boron	6010C	ND U	mg/L	0.021	1	08/03/20 10:41	07/21/20	

QA/QC Report

Client:Transalta Centralia Mining, LLCProject:LPLF CCRSample Matrix:Ground Water

Service Request: K2005859 **Date Analyzed:** 08/03/20

Lab Control Sample Summary Total Metals

Units:mg/L Basis:NA

Lab Control Sample KQ2009718-01

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Boron	6010C	0.500	0.500	100	80-120

General Chemistry

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER Page 24 of 27

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request:	K2005859
Project:	LPLF CCR	Date Collected:	NA
Sample Matrix:	Ground Water	Date Received:	NA
Sample Name: Lab Code:	Method Blank K2005859-MB1	Basis:	NA

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Dissolved	SM 2540 C	ND U	mg/L	5.0	1	07/14/20 10:30	

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request:	K2005859
Project:	LPLF CCR	Date Collected:	NA
Sample Matrix:	Ground Water	Date Received:	NA
Sample Name: Lab Code:	Method Blank K2005859-MB2	Basis:	NA

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Dissolved	SM 2540 C	ND U	mg/L	5.0	1	07/14/20 10:30	

QA/QC Report

Client: Project: Sample Matrix:	Transalta Centralia Mining, LLC LPLF CCR Ground Water		Service Req Date Analyz Date Extrac	ed:	K2005859 07/14/20 NA	9			
Lab Control Sample Summary Solids, Total Dissolved									
Analysis Method: Prep Method:	SM 2540 C None		Units: Basis: Analysis Lo		mg/L NA 686990				
Sample Name Lab Control Sample	Lab Code K2005859-LCS	Result 911	Spike Amount 922	% Rec 99		% Rec Limits 85-115			

Dennis Morr Transalta Centralia Mining, LLC 913 Big Hanaford Rd Centralia, WA 98531

Laboratory Results for: LPLF CCR

Dear Dennis,

Enclosed are the results of the sample(s) submitted to our laboratory October 14, 2020 For your reference, these analyses have been assigned our service request number **K2009322**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3350. You may also contact me via email at Kelley.Lovejoy@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Kelley Loveyoy

Kelley Lovejoy Project Manager

> ADDRESS 1317 S. 13th Avenue, Kelso, WA 98626 PHONE +1 360 577 7222 | FAX +1 360 636 1068 ALS Group USA, Corp. dba ALS Environmental

Narrative Documents

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Service Request: K2009322 Date Received: 10/14/2020

Project:LPLF CCRSample Matrix:Ground Water

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier II level requested by the client.

Sample Receipt:

Five ground water samples were received for analysis at ALS Environmental on 10/14/2020. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

Metals:

Client:

No significant anomalies were noted with this analysis.

Transalta Centralia Mining, LLC

General Chemistry:

Method SM 2540 C, 10/17/2020: The Relative Percent Difference (RPD) for the replicate analysis of Total Dissolved Solids in sample LPLF 7R was outside the normal ALS control limits. The associated QA/QC results (e.g. control sample, method blanks, balance checks, etc.) indicate the analysis was in control. No further corrective action was appropriate.

Approved by Kelley Lover

Date 11/10/2020

SAMPLE DETECTION SUMMARY

LIENT ID: LPLF 1						
Analyte	Results	Flag	MDL	MRL	Units	Method
Solids, Total Dissolved	2740			5.0	mg/L	SM 2540 C
Chloride	12		3	10	mg/L	9056A
Sulfate	1530		3	25	mg/L	9056A
Boron	597		3	21	ug/L	6010C
Calcium	232000		3	21	ug/L	6010C

CLIENT ID: LPLF 2R							
Analyte	Results	Flag	MDL	MRL	Units	Method	
Solids, Total Dissolved	3450			5.0	mg/L	SM 2540 C	
Chloride	5.2		0.3	1.0	mg/L	9056A	
Sulfate	1740		3	25	mg/L	9056A	
Boron	349		3	21	ug/L	6010C	
Calcium	494000		3	21	ug/L	6010C	

LIENT ID: LPLF 2R FD						
Analyte	Results	Flag	MDL	MRL	Units	Method
Solids, Total Dissolved	3710			5.0	mg/L	SM 2540 C
Sulfate	1840		3	25	mg/L	9056A
Boron	346		3	21	ug/L	6010C
Calcium	481000		3	21	ug/L	6010C

CLIENT ID: LPLF 7R		Lab ID: K2009322-004								
Analyte	Results	Flag	MDL	MRL	Units	Method				
Solids, Total Dissolved	2280			5.0	mg/L	SM 2540 C				
Chloride	7.2		0.3	1.0	mg/L	9056A				
Sulfate	1280		3	25	mg/L	9056A				
Boron	348		3	21	ug/L	6010C				
Calcium	220000		3	21	ug/L	6010C				

LIENT ID: LPLF 8						
Analyte	Results	Flag	MDL	MRL	Units	Method
Solids, Total Dissolved	3550			5.0	mg/L	SM 2540 C
Chloride	6.5		0.3	1.0	mg/L	9056A
Sulfate	2260		5	50	mg/L	9056A
Boron	1030		3	21	ug/L	6010C
Calcium	391000		3	21	ug/L	6010C

Sample Receipt Information

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER Page 5 of 50

SAMPLE CROSS-REFERENCE

SAMPLE #	CLIENT SAMPLE ID	<u>DATE</u>	TIME
K2009322-001	LPLF 1	10/14/2020	0840
K2009322-002	LPLF 2R	10/14/2020	0913
K2009322-003	LPLF 2R FD	10/14/2020	0938
K2009322-004	LPLF 7R	10/14/2020	1013
K2009322-005	LPLF 8	10/14/2020	1044

ADDRESS 1317 South 13th Ave., Kelso, WA 98626 PHONE 1 360 577 7222 FAX 1 360 636 1068

Work Order No.:

Chain of Custody

ALS	Steve Mah		o A Campbel								7	Bill to:								1/200931				
			Mining Comp	hanv							-					TransAlta Centralia Mining								
	913 Big Ha			2011 y					1				13 Big Hanaford Road											
City, State ZIP:	Centralia, V										1					ia, W								
Email:	steve mah				Phone:	360)-33	0-81	40		1	Em		62233					saita.	com		po#	1	· · · · · · · · · · · · · · · · · · ·
Project Name:	LPLF CCR					- 23	9888. 198						REQU	ESTE	D AN	NALY	/SIS	Negeo	i and a second		200-00C	28000		TAT
Project Number:															-	Т	Τ	Π	[T	T	T	Routine 21day
P.O. Number:	47000839	942 Line	30																					Same Day 100%
ampler's Name:	Steve Mah	ır						[Next Day ***
SAMPLE RECEIPT														ĺ						ĺ			3 Day	
Temperature (°C): Temp Blank Present																					5 Day 50%			
Received Intact:		Yes l	No N/A	Wet Ice / I	Blue Ice																			Surcharges.
Cooler Custody Seal		Yes l	No N/A	Total Cont	ainers:																			Please call for
Sample Custody Sea	ls:	Yes I	No N/A			iers		Š	e le			H				l								availability
Sample Identific	ation	Matrix	Date Sampled	Time Sampled	Lab ID	No. of Containers		SM 2540 C / TDS	9056A / Chloride	9056A / F	9056A / SO4	6010C / Metals							1997 - Sana A. Sana Marina and Sana Ang					Due Date:
LPLF 1		GW	10/14/2020	8:40		2		X	X	x	X	x				1								
LPLF 2R		GW	10/14/2020	9:13		2		X	X	X	X	X												
LPLF 2R FC		GW	10/14/2020	9:38		2		X	X	X	X	X												
LPLF 7R		GW	10/14/2020	10:13		2		X	X	X	X	X												
LPLF 8		GW	10/14/2020	10:44		2	[X	X	X	X	X		T	1									
LPLF 8 MS		GW	10/14/2020	10:53		2		X	X	X	X	X				I		1				1		
LPLF 8 MSE		GW	10/14/2020	11:00		2		x	x	X	x	X												
Dissolved			g, Al, As, B, Ba										·····											onal Methods
otal			g, Al, As, B, Ba		, Co, Cr,	Cu, F	e, K,	Li, M	g, Mr	n, Mo	o, Na,	, Ni,	P, Pb, St	o, Se, 1	Si, Sn	, Sr, 1						Avai	lable	e Upon Request
		<u> </u>	LINQUISH	and the second second second		199999 19999	ataal wa	veddi Totu			969 			148 (1897) 	an staar 		R	ECE		<u>ρ Β</u>			्यत्र होते. स्वयम्बरम्बर	
	Print Name Signature				Date/Time						Print Name					ature	ure Date/Time							
Print N	ame	eresti - i	ः इत्यान् २१	gilature			u					1	AA'	1			1		X	~	55 S S S S	In.	· · · · · · · · · · · · · · · · · · ·	Duce, mile and

Client TransAlta Received: 10-14-26 Opened:	Cooler Receipt and	Service	Form Request <i>K20</i> loaded: /() -	<u>09323</u>	PM <u>Kelle</u>
· · · · · · · · · · · · · · · · · · ·	/			I Dy.	K
1. Samples were received via? USPS 2. Samples were received in: (circle) Cool	Fed Ex UPS		PDX Couri		
		Envelope O how many and where	ther		NA
If present, were custody seals intact?		ent, were they signed		Y	N
4. Was a Temperature Blank present in cooler? N	-	notate the temperatur		column below:	
If no, take the temperature of a representative s					
5. Were samples received within the method speci	fied temperature ranges?			NA (Y) _N
If no, were they received on ice and same day a	s collected? If not, notate th	e cooler # below and	notify the PM.	(NA) Y	N
If applicable, tissue samples were received: Fr	ozen Partially Thawed	Thawed		\bigcirc	
Temp Blank Sample Temp IR Gun 3.0	Cooler #/COC ID / NA	Out of temp indicate with "X"	PM Notified If out of temp	Tracking Numb	er NA Filed
	5				
6. Packing material: Inserts Baggies Bubb	ie Wrap Gel Packs (We	I Ice Dry Ice Sie	eves		<u></u>
7. Were custody papers properly filled out (ink, s	-			NA (Y) N
 Were samples received in good condition (unb Were all sample labels complete (ie, analysis, j 				NA (Y)	N
 Were an sample labels complete (le, analysis, 10. Did all sample labels and tags agree with custo 				NA (Y) NA (Y)) N N
11. Were appropriate bottles/containers and volum	es received for the tests ind	icated?		NA 😧	/ N
12. Were the pH-preserved bottles (see SMO GEN	SOP) received at the appro-	priate pH? Indicate i	in the table below	NA (Y)) N
13. Were VOA vials received without headspace?	Indicate in the table below.			NA Y	N
14. Was C12/Res negative?				NA Y	N
Sample ID on Bottle	Sample ID on	COC		dentified by:	
					······································
Sample ID	Bottle Count Head- Bottle Type space	Broke pH Rea	Volume added	Reagent Lot Number	Initials Time
			Barra I danan	***********	

1

. .

Notes, Discrepancies, Resolutions:_____

Miscellaneous Forms

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- $i \,$ $\,$ The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- ${f F}$ The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEH	http://dec.alaska.gov/eh/lab/cs/csapproval.htm	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L16-58-R4
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	http://health.hawaii.gov/	-
ISO 17025	http://www.pjlabs.com/	L16-57
Louisiana DEQ	http://www.deq.louisiana.gov/page/la-lab-accreditation	03016
Maine DHS	http://www.maine.gov/dhhs/	WA01276
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/enforcement/oqa.html	WA005
New York - DOH	https://www.wadsworth.org/regulatory/elap	12060
North Carolina DEQ	https://deq.nc.gov/about/divisions/water-resources/water-resources- data/water-sciences-home-page/laboratory-certification-branch/non-field-lab- certification	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaborator yAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/EnvironmentalLabCertification/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wyoming (EPA Region 8)	https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water-	-
Kelso Laboratory Website	www.alsglobal.com to our laboratory's NFLAP-approved quality assurance program A complete	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LOD	Limit of Detection
LOQ	Limit of Quantitation
LUFT	Leaking Underground Fuel Tank
M MCL	Modified Maximum Contaminant Level is the highest permissible concentration of a substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH	Total Petroleum Hydrocarbons
tr	Trace level is the concentration of an analyte that is less than the PQL but greater than or equal to the MDL.

Analyst Summary report

Client:Transalta Centralia Mining, LLCProject:LPLF CCR/

LPLF 1

K2009322-001

Ground Water

Sample Name:

Sample Matrix:

Lab Code:

Service Request: K2009322

 Date Collected:
 10/14/20

 Date Received:
 10/14/20

Analysis Method 6010C 9056A SM 2540 C Sample Name:	LPLF 2R	Extracted/Digested By JHINSON	Analyzed By RMOORE MKANALY JMADISON Date Collected: 10/14/20
Lab Code:	K2009322-002		Date Received: 10/14/20
Sample Matrix: Analysis Method 6010C 9056A SM 2540 C	Ground Water	Extracted/Digested By JHINSON	Analyzed By RMOORE MKANALY JMADISON
Sample Name:	LPLF 2R FD		Date Collected: 10/14/20
Lab Code:	K2009322-003		Date Received: 10/14/20
Sample Matrix:	Ground Water		
Analysis Method		Extracted/Digested By	Analyzed By
6010C		JHINSON	RMOORE
9056A SM 2540 C			MKANALY
SM 2540 C			JMADISON
Sample Name:	LPLF 7R		Date Collected: 10/14/20
Lab Code:	K2009322-004		Date Received: 10/14/20
Sample Matrix:	Ground Water		
Analysis Method		Extracted/Digested By	Analyzed By
6010C		JHINSON	RMOORE

9056A

SM 2540 C

Analyst Summary report

Client:Transalta Centralia Mining, LLCProject:LPLF CCR/

LPLF 8

K2009322-005

Ground Water

Sample Name:

Sample Matrix:

Lab Code:

Service Request: K2009322

Date Collected: 10/14/20 **Date Received:** 10/14/20

Analysis Method		Extracted/Digested By	Analyzed By
6010C		JHINSON	RMOORE
9056A			MKANALY
SM 2540 C			JMADISON
Sample Name:	LPLF 8	Date Col	lected: 10/14/20
Lab Code:	K2009322-005.R01	Date Re	ceived: 10/14/20
Sample Matrix:	Ground Water		
Analysis Method		Extracted/Digested By	Analyzed By
•		Extracted/Digested by	• •
9056A			MKANALY

Sample Results

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER Page 15 of 50

Metals

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER Page 16 of 50

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request: K2009322
Project:	LPLF CCR	Date Collected: 10/14/20 08:40
Sample Matrix:	Ground Water	Date Received: 10/14/20 16:00
Sample Name: Lab Code:	LPLF 1 K2009322-001	Basis: NA

Analyte Name	Analysis Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Boron	6010C	597	ug/L	21	3	1	10/24/20 09:43	10/21/20	
Calcium	6010C	232000	ug/L	21	3	1	10/24/20 09:43	10/21/20	

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request: K2009322	
Project:	LPLF CCR	Date Collected: 10/14/20 09:13	
Sample Matrix:	Ground Water	Date Received: 10/14/20 16:00	
Sample Name: Lab Code:	LPLF 2R K2009322-002	Basis: NA	

Analyte Name	Analysis Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Date Extracted	0
Boron	6010C	349	ug/L	21	3	1	10/24/20 09:54	10/21/20	<u> </u>
Calcium	6010C	494000	ug/L	21	3	1	10/24/20 09:54	10/21/20	

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request: K2009322
Project:	LPLF CCR	Date Collected: 10/14/20 09:38
Sample Matrix:	Ground Water	Date Received: 10/14/20 16:00
Sample Name: Lab Code:	LPLF 2R FD K2009322-003	Basis: NA

Analyte Name	Analysis Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Boron	6010C	346	ug/L	21	3	1	10/24/20 09:57	10/21/20	_
Calcium	6010C	481000	ug/L	21	3	1	10/24/20 09:57	10/21/20	

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request:	K2009322
Project:	LPLF CCR	Date Collected:	10/14/20 10:13
Sample Matrix:	Ground Water	Date Received:	10/14/20 16:00
Sample Name: Lab Code:	LPLF 7R K2009322-004	Basis:	NA

Analyte Name	Analysis Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Boron	6010C	348	ug/L	21	3	1	10/24/20 10:00	10/21/20	
Calcium	6010C	220000	ug/L	21	3	1	10/24/20 10:00	10/21/20	

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request:	K2009322
Project:	LPLF CCR	Date Collected:	10/14/20 10:44
Sample Matrix:	Ground Water	Date Received:	10/14/20 16:00
Sample Name: Lab Code:	LPLF 8 K2009322-005	Basis: 1	NA

Analyte Name	Analysis Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Boron	6010C	1030	ug/L	21	3	1	10/24/20 10:02	10/21/20	
Calcium	6010C	391000	ug/L	21	3	1	10/24/20 10:02	10/21/20	

General Chemistry

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER Page 22 of 50

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request: K2009322
Project:	LPLF CCR	Date Collected: 10/14/20 08:40
Sample Matrix:	Ground Water	Date Received: 10/14/20 16:00
Sample Name: Lab Code:	LPLF 1 K2009322-001	Basis: NA

	Analysis							
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Q
Chloride	9056A	12	mg/L	10	3	100	11/05/20 13:53	
Fluoride	9056A	ND U	mg/L	2.0	0.03	10	11/05/20 19:20	
Sulfate	9056A	1530	mg/L	25	3	250	11/05/20 20:29	

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request: K2009322
Project:	LPLF CCR	Date Collected: 10/14/20 08:40
Sample Matrix:	Ground Water	Date Received: 10/14/20 16:00
Sample Name: Lab Code:	LPLF 1 K2009322-001	Basis: NA

	Analysis							
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Q
Solids, Total Dissolved	SM 2540 C	2740	mg/L	5.0	-	1	10/17/20 10:35	

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request: K2009322
Project:	LPLF CCR	Date Collected: 10/14/20 09:13
Sample Matrix:	Ground Water	Date Received: 10/14/20 16:00
Sample Name: Lab Code:	LPLF 2R K2009322-002	Basis: NA

	Analysis							
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Q
Chloride	9056A	5.2	mg/L	1.0	0.3	10	11/05/20 19:30	
Fluoride	9056A	ND U	mg/L	2.0	0.03	10	11/05/20 19:30	
Sulfate	9056A	1740	mg/L	25	3	250	11/05/20 20:39	

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request: K2009322
Project:	LPLF CCR	Date Collected: 10/14/20 09:13
Sample Matrix:	Ground Water	Date Received: 10/14/20 16:00
Sample Name: Lab Code:	LPLF 2R K2009322-002	Basis: NA

	Analysis							
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Q
Solids, Total Dissolved	SM 2540 C	3450	mg/L	5.0	-	1	10/17/20 10:35	

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request: K2009322
Project:	LPLF CCR	Date Collected: 10/14/20 09:38
Sample Matrix:	Ground Water	Date Received: 10/14/20 16:00
Sample Name: Lab Code:	LPLF 2R FD K2009322-003	Basis: NA

	Analysis							
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Q
Chloride	9056A	ND U	mg/L	25	8	250	11/05/20 20:49	
Fluoride	9056A	ND U	mg/L	2.0	0.03	10	11/05/20 19:59	
Sulfate	9056A	1840	mg/L	25	3	250	11/05/20 20:49	

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request: K2009322
Project:	LPLF CCR	Date Collected: 10/14/20 09:38
Sample Matrix:	Ground Water	Date Received: 10/14/20 16:00
Sample Name: Lab Code:	LPLF 2R FD K2009322-003	Basis: NA

	Analysis							
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Q
Solids, Total Dissolved	SM 2540 C	3710	mg/L	5.0	-	1	10/17/20 10:35	

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request: K2009322
Project:	LPLF CCR	Date Collected: 10/14/20 10:13
Sample Matrix:	Ground Water	Date Received: 10/14/20 16:00
Sample Name: Lab Code:	LPLF 7R K2009322-004	Basis: NA

	Analysis							
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Q
Chloride	9056A	7.2	mg/L	1.0	0.3	10	11/05/20 20:09	
Fluoride	9056A	ND U	mg/L	2.0	0.03	10	11/05/20 20:09	
Sulfate	9056A	1280	mg/L	25	3	250	11/05/20 20:58	

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request: K2009322
Project:	LPLF CCR	Date Collected: 10/14/20 10:13
Sample Matrix:	Ground Water	Date Received: 10/14/20 16:00
Sample Name: Lab Code:	LPLF 7R K2009322-004	Basis: NA

	Analysis							
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Q
Solids, Total Dissolved	SM 2540 C	2280	mg/L	5.0	-	1	10/17/20 11:35	

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request:	K2009322
Project:	LPLF CCR	Date Collected:	10/14/20 10:44
Sample Matrix:	Ground Water	Date Received:	10/14/20 16:00
Sample Name: Lab Code:	LPLF 8 K2009322-005	Basis:	NA

	Analysis							
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Q
Chloride	9056A	6.5	mg/L	1.0	0.3	10	11/09/20 12:43	
Fluoride	9056A	ND U	mg/L	2.0	0.03	10	11/05/20 20:19	
Sulfate	9056A	2260	mg/L	50	5	500	11/05/20 21:08	

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request: K2009322
Project:	LPLF CCR	Date Collected: 10/14/20 10:44
Sample Matrix:	Ground Water	Date Received: 10/14/20 16:00
Sample Name: Lab Code:	LPLF 8 K2009322-005	Basis: NA

	Analysis							
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Q
Solids, Total Dissolved	SM 2540 C	3550	mg/L	5.0	-	1	10/17/20 11:35	

QC Summary Forms

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER Page 33 of 50

Metals

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER Page 34 of 50

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request: K2009322
Project:	LPLF CCR	Date Collected: NA
Sample Matrix:	Ground Water	Date Received: NA
Sample Name: Lab Code:	Method Blank KQ2015927-02	Basis: NA

Total Metals

Analyte Name	Analysis Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Boron	6010C	4 J	ug/L	21	3	1	10/24/20 09:41	10/21/20	
Calcium	6010C	18 J	ug/L	21	3	1	10/24/20 09:41	10/21/20	

QA/QC Report

Client:	Transalta Centralia Mining, Ll	LC	Service	e Request:	K2009322
Project:	LPLF CCR		Date C	ollected:	10/14/20
Sample Matrix:	Ground Water		Date R	eceived:	10/14/20
			Date A	nalyzed:	10/24/20
			Date E	xtracted:	10/21/20
		Matrix Spike Su	Immary		
		Total Meta	als		
Sample Name:	LPLF 8			Units:	ug/L
Lab Code:	K2009322-005			Basis:	NA
Analysis Method:	6010C				
Prep Method:	EPA CLP ILM04.0				
		Matrix Spike			
		KQ2015927-04			
Analyte Name	Sample Result	Result	Spike Amount	% Rec	% Rec Limits

1490

405000

500

10000

92

137 #

75-125

75-125

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

1030

391000

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

Boron

Calcium

QA/QC Report

Client: Project Sample Matrix:	Transalta Centrali LPLF CCR Ground Water	ia Mining, Ll	LC			Service Request: Date Collected: Date Received: Date Analyzed:	10/14/2 10/14/2	20 20
			Replicate	e Sample Sun	nmary	·		
			T	otal Metals	-			
Sample Name:	LPLF 8					Units	ug/L	
Lab Code:	K2009322-005					Basis	: NA	
				a I	Duplicate Sample			
Analyte Name	Analysis Method	MRL	MDL	Sample Result	KQ2015927-03 Result	Average	RPD	RPD Limit
Boron Calcium	6010C 6010C	21 21	3 3	1030 391000	1020 387000	1030 389000	<1 1	20 20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client:Transalta Centralia Mining, LLCProject:LPLF CCRSample Matrix:Ground Water

Service Request: K2009322 **Date Analyzed:** 10/24/20

Lab Control Sample Summary Total Metals

Units:ug/L Basis:NA

Lab Control Sample

KQ2015927-01

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Boron	6010C	492	500	98	80-120
Calcium	6010C	12600	12500	100	80-120

General Chemistry

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER Page 39 of 50

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request: K2009322
Project:	LPLF CCR	Date Collected: NA
Sample Matrix:	Ground Water	Date Received: NA
Sample Name: Lab Code:	Method Blank K2009322-MB1	Basis: NA

	Analysis							
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Q
Chloride	9056A	ND U	mg/L	0.10	0.03	1	11/05/20 09:11	
Fluoride	9056A	ND U	mg/L	0.20	0.003	1	11/05/20 09:11	
Sulfate	9056A	ND U	mg/L	0.10	0.01	1	11/05/20 09:11	

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request: K2009322
Project:	LPLF CCR	Date Collected: NA
Sample Matrix:	Ground Water	Date Received: NA
Sample Name: Lab Code:	Method Blank K2009322-MB1	Basis: NA

	Analysis							
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Q
Solids, Total Dissolved	SM 2540 C	ND U	mg/L	5.0	-	1	10/17/20 10:35	

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request: K2009322
Project:	LPLF CCR	Date Collected: NA
Sample Matrix:	Ground Water	Date Received: NA
Sample Name: Lab Code:	Method Blank K2009322-MB2	Basis: NA

	Analysis	D	T T 1 /	1001	101	5.1		0
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Q
Chloride	9056A	ND U	mg/L	0.10	0.03	1	11/09/20 09:50	

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request: K2009322
Project:	LPLF CCR	Date Collected: NA
Sample Matrix:	Ground Water	Date Received: NA
Sample Name: Lab Code:	Method Blank K2009322-MB2	Basis: NA

	Analysis							
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Q
Solids, Total Dissolved	SM 2540 C	ND U	mg/L	5.0	-	1	10/17/20 10:35	

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request: K2009322
Project:	LPLF CCR	Date Collected: NA
Sample Matrix:	Ground Water	Date Received: NA
Sample Name: Lab Code:	Method Blank K2009322-MB3	Basis: NA

	Analysis							
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Q
Solids, Total Dissolved	SM 2540 C	ND U	mg/L	5.0	-	1	10/17/20 11:35	

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request: K2009322
Project:	LPLF CCR	Date Collected: NA
Sample Matrix:	Ground Water	Date Received: NA
Sample Name: Lab Code:	Method Blank K2009322-MB4	Basis: NA

	Analysis							
Analyte Name	Method	Result	Units	MRL	MDL	Dil.	Date Analyzed	Q
Solids, Total Dissolved	SM 2540 C	ND U	mg/L	5.0	-	1	10/17/20 11:35	

QA/QC Report

Client:	Transalta Centralia Mining, LLC
Project:	LPLF CCR
Sample Matrix:	Ground Water

Service Request:K2009322 Date Collected: 10/14/20 Date Received: 10/14/20 Date Analyzed:11/05/20 - 11/09/20

Duplicate Matrix Spike Summary General Chemistry Parameters

Sample Name: Lab Code:	LPLF 8 K2009322	2-005							J nits: mg/L Basis:NA		
				Matrix SpikeDK2009322-005MS		Duplicate Matrix Spike K2009322-005DMS					
		Sample		Spike			Spike		% Rec		RPD
Analyte Name	Method	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Fluoride	9056A	ND U	17.1	20.0	85	17.1	20.0	85	80-120	<1	20
Chloride	9056A	6.5	52.0	40.0	114	51.4	40.0	112	80-120	1	20
Sulfate	9056A	2260	4110	2000	92	4160	2000	95	90-110	1	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client: Project	Transalta Centralia M LPLF CCR	ining, LLC				Service Request: Date Collected:			
Sample Matrix:	Ground Water					Date Received:	10/14/20	0	
		R	eplicate Sa	mple Summaı	rv	Date Analyzed:	10/17/20	0	
General Chemistry Parameters									
Sample Name:	LPLF 7R					Units:	mg/L		
Lab Code:	K2009322-004					Basis:	NA		
	Analysis			Sample	Duplicate Sample K2009322- 004DUP				
Analyte Name	Method	MRL	MDL	Result	Result	Average	RPD	RPD Limit	
Solids, Total Dissolved	SM 2540 C	5.0	-	2280	2470	2380	8 *	5	

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client: Project	Transalta Centralia M LPLF CCR	lining, LLC				Service Request: Date Collected:		
Sample Matrix:	Ground Water					Date Conected: Date Received:		
						Date Analyzed:	10/17/2	20 - 11/09/20
		R	Replicate Sa	mple Summa	ry			
		Ge	neral Chem	istry Parame	ters			
Sample Name:	LPLF 8					Units:	mg/L	
Lab Code:	K2009322-005					Basis:	NA	
Analvte Name	Analysis Method	MRL	MDL	Sample Result	Duplicate Sample K2009322- 005DUP Result	Average	RPD	RPD Limit

	Analysis			Sample	005DUP			
Analyte Name	Method	MRL	MDL	Result	Result	Average	RPD	RPD Limit
Chloride	9056A	1.0	0.3	6.5	6.5	6.53	<1	20
Fluoride	9056A	2.0	0.03	ND U	ND U	NC	NC	20
Solids, Total Dissolved	SM 2540 C	5.0	-	3550	3710	3630	5	5
Sulfate	9056A	50	5	2260	2220	2240	2	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client:Transalta Centralia Mining, LLCProject:LPLF CCRSample Matrix:Ground Water

Service Request: K2009322 Date Analyzed: 10/17/20 - 11/05/20

Lab Control Sample Summary General Chemistry Parameters

Units:mg/L Basis:NA

Lab Control Sample

K2009322-LCS1

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Chloride	9056A	5.07	5.00	101	80-120
Fluoride	9056A	4.98	5.00	100	90-110
Solids, Total Dissolved	SM 2540 C	943	922	102	85-115
Sulfate	9056A	4.98	5.00	100	90-110

QA/QC Report

Client:Transalta Centralia Mining, LLCProject:LPLF CCRSample Matrix:Ground Water

Service Request: K2009322 Date Analyzed: 10/17/20 - 11/09/20

Lab Control Sample Summary General Chemistry Parameters

Units:mg/L Basis:NA

Lab Control Sample K2009322-LCS2

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Chloride	9056A	5.25	5.00	105	80-120
Solids, Total Dissolved	SM 2540 C	936	922	101	85-115

Dennis Morr Transalta Centralia Mining, LLC 913 Big Hanaford Rd Centralia, WA 98531

Laboratory Results for: LPLF CCR

Dear Dennis,

Enclosed are the results of the sample(s) submitted to our laboratory November 11, 2020 For your reference, these analyses have been assigned our service request number **K2010461**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3350. You may also contact me via email at Kelley.Lovejoy@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Kelley Loveyoy

Kelley Lovejoy Project Manager

> ADDRESS 1317 S. 13th Avenue, Kelso, WA 98626 PHONE +1 360 577 7222 | FAX +1 360 636 1068 ALS Group USA, Corp. dba ALS Environmental

Narrative Documents

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Service Request: K2010461 Date Received: 11/11/2020

Project: LPLF CCR Sample Matrix: Ground Water

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier II level requested by the client.

Sample Receipt:

Two ground water samples were received for analysis at ALS Environmental on 11/11/2020. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

Metals:

Client:

No significant anomalies were noted with this analysis.

Transalta Centralia Mining, LLC

General Chemistry:

No significant anomalies were noted with this analysis.

Approved by Kelley Lovejo

Date 12/02/2020

SAMPLE DETECTION SUMMARY

CLIENT ID: LPLF 2R Lab ID: K2010461-001											
Analyte	Results	Flag	MDL	MRL	Units	Method					
Solids, Total Dissolved	3630			5.0	mg/L	SM 2540 C					
CLIENT ID: LPLF 8		Lab ID: K2010461-002									
Analyte	Results	Flag	MDL	MRL	Units	Method					
Boron	1.06			0.042	mg/L	6010C					

Sample Receipt Information

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER Page 5 of 28

SAMPLE CROSS-REFERENCE

SAMPLE #	CLIENT SAMPLE ID	DATE	TIME
K2010461-001	LPLF 2R	11/11/2020	1024

ADDRESS 1317 South 13th Ave., Kelso, WA 98626 PHONE 1 360 577 7222 FAX 1 360 636 1068

Work Order No.:

Chain of Custody

Part of the ALS Group A Campbell Brothers Limited Company

		p A campber			<u>, Sty with Car</u>				1	T.	ill to:		Stove	Mahr						
Project Manager: Steve Ma						I –				Steve Mahr										
Client Name: TransAlta							Company: Address:				TransAlta Centralia Mining 913 Big Hanaford Road									
Address: 913 Big H						L														
City, State ZIP: Centralia,					Taco		~ ~ ~ ~	40				ate ZIP:	Centra					1	.	
Email: steve ma		alta.com		Phone:	1360)-33	0-81	40		E	mail:	OULCE	steve		vtransa	alta.co	om	po	o#	TAT
Project Name: LPLF CC	R				+	1 .	T	T	I		- KE	QUESTI	D ANA	-1212	r				r	
Project Number:																			Routine 21da	
P.O. Number: 4700083		e 30																		Same Day 1009
Sampler's Name: Steve Ma																				Next Day ***
SA	MPLE RE	ECEIPT	Anne Constal	9.9.90.999.99													Í			3 Day
Temperature (°C):		Temp Bla	nk Present 🚲	÷.																5 Day 509
Received Intact:	Yes	No N/A	Wet Ice /	Blue Ice																Surcharges.
Cooler Custody Seals:	Yes	No N/A	Total Con	tainers:																Please call for
Sample Custody Seals:	Yes	No N/A			iers		s	⊢											i I	availability
Sample Identification	Matrix	Date Sampled	Time Sampled	Lab ID	of Containers		SM 2540 C / TDS	6010C / Metals						8						Due Date:
	béta é é			્ર સ્ટાયેલ્સ	° Z			601												Comments
LPLF 2R	GW	11/11/2020	10:24		1		X													TDS
LPLF 8	GW	11/11/2020	10:57		1			X												Boron
																	1			
					1		1							-						
																	-			
		1			t		1							-						
				1		<u> · · · </u>														
				-			†				-			-			-			
Dissolved		l I Ig, Al, As, B, B					~~~~~								*****	I				tional Methods
Total		g, Al, As, B, B		l, Co, Cr, (Cu, F	e, K,	Li, M	lg, M	n, Mo,	, Na, N	li, P, Pl	o, Sb, Se,	Si, Sn, Sr							ole Upon Request
	RE	LINQUISH	ED BY	en e	•••••			••••							RECE	IVEC) BY	2020 A		
Print Name		Si	gnature 🖉		33	Da	te/T	ime	9995	494		Print Na	me ^{lokalo}	et de la composition br>La composition de la c	nija.	S	ignat	nature Date/T		
Steve Mahr		N+	100	7	11/	11/	2020) 1:	544	1 \	r. ~	i. D	5 40	56 0		T				111120 154
			<u>LL</u>	~	ļ				-14		LOL	<u>111 PT</u>	m	-4 L						11110 151

	TransA	lta	Cooler Receipt	and Preserv			1000	РМ Р	
Received: 1	1/11/20	_ Opened: _	11/11/20	By: NP	Service Requestion Service	led: 11 / 11	170 By	1P	
1. Samples we	ere received via?	USPS		UPS DH					
2. Samples we	ere received in: (cir	cle) Co	oler Box	Envelope	Other			NA	
3. Were custoe	iy seals on coolers?		NA Y (N)	If yes, how many	and where?				
If present, v	vere custody seals in	ntact?	Y N	If present, were th	ey signed and	dated?	Y	N	
-	erature Blank present the temperature of a		NA Y N sample bottle contain	If yes, notate the t ed within the cool					
			ified temperature range		, notate ni bi	e containing our	NA R) N	
		-	as collected? If not, n	-	below and noti	fy the PM.	NA Y	N	
	ssue samples were r		rozen Partially Th			-,		14	
				Out of t	emp N	PM lotified			
Temp Blank	Sample Temp		Cooler #/COC ID/ N	A) indicate w	ith "X" If ou	st of temp	Tracking Nun	nber NA	Filed
55		IK)							

							<u></u>		
6. Packing ma	uterial: Inserts A	aggies Bub	ble Wrap Gel Pack	s Wel Ice Dry	Ice Sleeves				
7. Were custo	dy papers properly	filled out (ink,	, signed, etc.)?				NA (Y) N	
8. Were samp	les received in goo	d condition (un	nbroken)				NA X	Ŷ м	
		-	, preservation, etc.)?				NA Y	У N	
	ple labels and tags	-					NA (Y) N	
	-		mes received for the t				NA CY) N	
			N SOP) received at th		Indicate in th	e table below	NA (Y) и	
13. Were VOA	vials received with	nout headspace	? Indicate in the table	e below.			CNA Y	Ν	
14. Was C12/R	tes negative?				· · · · · · · · · · · · · · · · · · ·		NA Y	N	
Sa	mple ID on Botti	le	Sample	ID on COC	n statta		Identified by:		
							·····		
L									
			Bottle Count	Hand	1	Volume	Programt Lot		

٠

Sample ID	Bottle Count Bottle Type	Head- space	Broke	pН	Reagent	Volume added	initials	Time
· · · · · · · · · · · · · · · · · · ·			l			I	 	

Notes, Discrepancies, Resolutions:_____

Miscellaneous Forms

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- $i \,$ $\,$ The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- ${f F}$ The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEH	http://dec.alaska.gov/eh/lab/cs/csapproval.htm	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L16-58-R4
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	http://health.hawaii.gov/	-
ISO 17025	http://www.pjlabs.com/	L16-57
Louisiana DEQ	http://www.deq.louisiana.gov/page/la-lab-accreditation	03016
Maine DHS	http://www.maine.gov/dhhs/	WA01276
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/enforcement/oqa.html	WA005
New York - DOH	https://www.wadsworth.org/regulatory/elap	12060
North Carolina DEQ	https://deq.nc.gov/about/divisions/water-resources/water-resources- data/water-sciences-home-page/laboratory-certification-branch/non-field-lab- certification	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaborator yAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/EnvironmentalLabCertification/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wyoming (EPA Region 8)	https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water-	-
Kelso Laboratory Website	www.alsglobal.com to our laboratory's NFLAP-approved quality assurance program A complete	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LOD	Limit of Detection
LOQ	Limit of Quantitation
LUFT	Leaking Underground Fuel Tank
M MCL	Modified Maximum Contaminant Level is the highest permissible concentration of a substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH	Total Petroleum Hydrocarbons
tr	Trace level is the concentration of an analyte that is less than the PQL but greater than or equal to the MDL.

Analyst Summary report

Client:	Transalta Centralia Mining, LLC		Service Request: K2010461
Project:	LPLF CCR/		
Sample Name:	LPLF 2R		Date Collected: 11/11/20
Bampie Manie.			Date Conected: 11/11/20
Lab Code:	K2010461-001		Date Received: 11/11/20
Sample Matrix:	Ground Water		
Analysis Method		Extracted/Digested By	Analyzed By

SM 2540 C

Lab Code:

Sample Name:

Sample Matrix:

LPLF 8

K2010461-002

Ground Water

JMADISON

Date Collected: 11/11/20 **Date Received:** 11/11/20

Analysis Method	Extracted/Digested By	Analyzed By
6010C	ABOYER	AMCKORNEY

Sample Results

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER Page 14 of 28

Metals

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER Page 15 of 28

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request: K2010	461
Project:	LPLF CCR	Date Collected: 11/11/2	20 10:57
Sample Matrix:	Ground Water	Date Received: 11/11/2	20 15:45
Sample Name: Lab Code:	LPLF 8 K2010461-002	Basis: NA	

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Boron	6010C	1.06	mg/L	0.042	2	12/01/20 14:02	11/16/20	

General Chemistry

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER Page 17 of 28

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request:	K2010461
Project:	LPLF CCR	Date Collected:	11/11/20 10:24
Sample Matrix:	Ground Water	Date Received:	11/11/20 15:45
Sample Name: Lab Code:	LPLF 2R K2010461-001	Basis:	NA

General Chemistry Parameters

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Dissolved	SM 2540 C	3630	mg/L	5.0	1	11/12/20 08:40	

QC Summary Forms

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER Page 19 of 28

Metals

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER Page 20 of 28

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request: K2010461
Project:	LPLF CCR	Date Collected: NA
Sample Matrix:	Ground Water	Date Received: NA
Sample Name: Lab Code:	Method Blank KQ2017997-02	Basis: NA

Total Metals

	Analysis							0
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Boron	6010C	ND U	mg/L	0.021	1	12/01/20 13:56	11/16/20	

QA/QC Report

Client:	Transalta Centralia Mining, LI	LC	Servic	e Request:	K2010461
Project:	LPLF CCR		Date (Collected:	11/11/20
Sample Matrix:	Ground Water		Date I	Received:	11/11/20
			Date A	Analyzed:	12/1/20
			Date I	Extracted:	11/16/20
		Matrix Spike Su	nmary		
		Total Metal	s		
Sample Name:	LPLF 8			Units:	mg/L
Lab Code:	K2010461-002			Basis:	NA
Analysis Method:	6010C				
Prep Method:	EPA CLP ILM04.0				
		Matrix Spike			
		KQ2017997-04			
Analyte Name	Sample Result	Result	Spike Amount	% Rec	% Rec Limits
Boron	1.06	1.54	0.500	95	75-125

Results flagged with an asterisk (\ast) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

QA/QC Report

Client: Project	Transalta Centralia M LPLF CCR	/lining, LLC			Service F Date Co	Request: ollected:		
Sample Matrix:	Ground Water					eceived: nalvzed:		
					Date Al	lalyzeu:	12/01/2	.0
		F	Replicate Samp	ole Summary				
			Total M	letals				
Sample Name:	LPLF 8					Units:	mg/L	
Lab Code:	K2010461-002					Basis:	NA	
Analyte Name	Analysis Method	MRL	Sample Result	Duplicate Sample KQ2017997-03 Result	Avorago	RP	п	RPD Limit
Boron	6010C	0.042	1.06	1.08	Average 1.07	2	U	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client:Transalta Centralia Mining, LLCProject:LPLF CCRSample Matrix:Ground Water

Service Request: K2010461 **Date Analyzed:** 12/01/20

Lab Control Sample Summary Total Metals

Units:mg/L Basis:NA

Lab Control Sample							
		KQ2017997-01					
Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits		
Boron	6010C	0.513	0.500	103	80-120		

General Chemistry

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER Page 25 of 28

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request: K2010461
Project:	LPLF CCR	Date Collected: NA
Sample Matrix:	Ground Water	Date Received: NA
Sample Name: Lab Code:	Method Blank K2010461-MB1	Basis: NA

General Chemistry Parameters

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Dissolved	SM 2540 C	ND U	mg/L	5.0	1	11/12/20 08:40	

Analytical Report

Client:	Transalta Centralia Mining, LLC	Service Request: K2010461
Project:	LPLF CCR	Date Collected: NA
Sample Matrix:	Ground Water	Date Received: NA
Sample Name: Lab Code:	Method Blank K2010461-MB2	Basis: NA

General Chemistry Parameters

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Solids, Total Dissolved	SM 2540 C	ND U	mg/L	5.0	1	11/12/20 08:40	

QA/QC Report

Client: Project: Sample Matrix:	Transalta Centralia Mining, LLC LPLF CCR Ground Water		Service Red Date Analy Date Extra	zed:	K201046 11/12/20 NA			
Lab Control Sample Summary Solids, Total Dissolved								
Analysis Method: Prep Method:	SM 2540 C None		Units: Basis: Analysis Lo	ot:	mg/L NA 703127			
Sample Name Lab Control Sample	Lab Code K2010461-LCS	Result 916	Spike Amount 922	% Rec 99		% Rec Limits 85-115		